Measurement of Capillary Oscillations of the Sea Surface

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Capillary waves on the sea surface have a significant effect on the scattering of both optical and microwave radiation. Although the amplitude of capillary waves is fractions of a millimeter, the slopes formed on capillary waves often exceed 30°, which leads to a strong change in the effective reflection, absorption, and backscattering cross sections. Capillary waves are studied in detail in pools; however, in natural marine conditions, they could only be measured indirectly, usually by reflections or glare. In this paper, a remote method for measuring slopes, amplitudes, and direction of the wave vector of the capillary wave structure in natural conditions is proposed and applied. In the proposed method, distortions of laser beams falling from top to bottom on the sea surface are recorded on a video camera. The authors managed to solve the inverse problem of calculating all the parameters of a capillary wave based on the shape of a capillary comb in video frames. The sensitivity of the method for measuring the wave amplitude is 30 µm at a distance to the surface of over 4 m.

全文:

受限制的访问

作者简介

V. Sterlyadkin

MIREA – Russian Technological University

编辑信件的主要联系方式.
Email: sterlyadkin@mail.ru
俄罗斯联邦, Moscow

K. Kulikovsky

MIREA – Russian Technological University

Email: sterlyadkin@mail.ru
俄罗斯联邦, Moscow

A. Zadernovsky

MIREA – Russian Technological University

Email: sterlyadkin@mail.ru
俄罗斯联邦, Moscow

参考

  1. Басс Ф.Г., Брауде С.Я., Калмыков А.И. и др. Методы радиолокационных исследований морского волнения (радиоокеанография) // Успехи физических наук. 1975. Т. 116. С. 741–743. https://doi.org/10.3367/UFNr.0116.197508j.0741
  2. Ермаков С.А., Рувинский К.Д., Салашин С.Г., Фрейдман Г.И. Экспериментальное исследование генерации капиллярно-гравитационной ряби сильнонелинейными волнами на поверхности глубокой жидкости // Изв. АН СССР. Физика атмосферы и океана. 1986. Т. 22. № 10. С. 1072–1080.
  3. Ермаков С.А., Сергиевская И.А., Щегольков Ю.Б. Лабораторные исследования кривизны гравитационно-капиллярных волн конечной амплитуды // Изв. РАН. Физика атмосферы и океана. 1997. Т. 33. № 3. С. 394–401.
  4. Садовский И.Н., Сазонов Д.С. Экспериментальные исследования эффективной излучательной способности взволнованной морской поверхности // Современные проблемы дистанционного зондирования Земли из космоса. 2023. Т. 20. № 6. С. 234–246. https://doi.org/10.21046/2070-7401-2023-20-6-234-246
  5. Стерлядкин В.В. Сканирующий лазерный волнограф с регистрацией “мгновенной” формы поверхности. Патент РФ № 2749727. 16.10.2020.
  6. Стерлядкин В.В., Куликовский К.В. Измерение капиллярных волн лазерным волнографом // Российский технолог. журн. 2022. Т. 10. № 5. C. 100–110. https://www.rtj-mirea.ru/jour/article/view/571/415
  7. Стерлядкин В.В., Сазонов Д.С., Кузьмин А.В., Шарков Е.А. Наземные радиометрические измерения эффективной излучательной способности морской поверхности без абсолютной калибровки // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 2. С. 29–41. https://doi.org/10.21046/2070-7401-2018-15-2-29-41
  8. Donelan M.A., Pierson W.J. Jr. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry // J. Geophysical Research. 1987. V. 92. Iss. C5. P. 4971–5029. https://doi.org/10.1029/JC092iC05p04971
  9. Ebuchi N., Kawamura H., Toba Y. Fine structure of laboratory wind-wave surfaces studied using an optical method // Boundary-Layer Meteorology. 1987. V. 39. P. 133–151.
  10. Ermakov S.A., Makarov E.V., Sergievskaya I.A. Radar scattering on gravity-capillary waves: Laboratory investigation // Izvestiya, Atmospheric and Oceanic Physics. 2007. V. 43. P. 243–249. https://doi.org/10.1134/S0001433807020119
  11. Ermakov S.A., Sergievskaya I.A., Dobrokhotov V.A., Lazareva T.N. Wave tank study of steep gravity-capillary waves and their role in Ka-band radar backscatter // IEEE Trans. Geoscience and Remote Sensing. 2022. V. 60. P. 1–12. Article 4202812. https://doi.org/10.1109/TGRS.2021.3086627
  12. Fedorov A.V., Melville W. Rozenberg K.A. An experimental and numerical study of parasitic capillary waves // Physics of Fluids. 1998. V. 10. P. 1315–1323. https://doi.org/10.1063/1.869657
  13. Perlin M., Lin H., Ting C.-L. On parasitic capillary waves generated by steep gravity waves: Аn experimental investigation with spatial and temporal measurements // J. Fluid Mechanics. 1993. V. 2. P. 417–445. https://doi.org/10.1017/S0022112093002605
  14. Sterlyadkin V.V. Some aspects of the scattering of light and microwaves on non-spherical raindrops // Atmosphere. 2020. V. 11. Iss. 5. Article 531. https://doi.org/10.3390/atmos11050531
  15. Sterlyadkin V.V. The problem of reconstructing the profile of the sea surface from the video image of laser beams // Oceanology. 2024. V. 64. № 3. P. 342–352.
  16. Sterlyadkin V.V., Kuzmin A.V., Sharkov E.A., Likhacheva M.V. Scanning laser wave recorder with registration of “Instantaneous” sea surface profiles // Atmospheric and Oceanic Technology. 2021. V. 38. № 8. P. 1415–1424. https://doi.org/10.1175/JTECH-D-21–0036.1
  17. Yurovsky Y.Y., Kudryavtsev V.N., Grodsky S.A., Chapron B. Ka-band dual copolarized empirical model for the sea surface radar cross section // IEEE Trans. Geoscience and Remote Sensing. 2017. V. 55. № 3. P. 1629–1647. https://doi.org/10.1109/TGRS.2016.2628640

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of measurements by laser wavegraph (a): 1 - the scanner illuminates separate points of the sea surface and unfolds the laser beam on orthogonal sections in the centre; 2 - the video camera registers the scattered image; b - a separate video frame. The upper edge of the image corresponds to the water-air interface.

下载 (317KB)
3. Fig. 2. Distortion of laser beams by capillary waves: a - night measurements. The sections have a scale of 50 mm. Almost vertical axis X defines the undistorted line of the laser beam, capillary wave forms short-period deviations from the smooth line ab, which is caused by the gravity wave; b - daytime measurements of capillary waves.

下载 (535KB)
4. Fig. 3. The image of a straight white thread travelled through a capillary wave on a surface depends on the angle between the wave vector k and the video camera axis X: a - θ = 20°; b - θ = 40°; c - θ = 55°. The image of the bright lower edge of the aquarium can be seen at the bottom.

下载 (276KB)
5. Fig. 4. Path of rays through the agitated sea surface: a - lateral view, ray projections on the xz plane; b - top view, xy section. Vector n1, is perpendicular to the plane of incidence passing through three points A, B, C; unit vector n2 is the normal to the sea surface at point A.

下载 (183KB)
6. Fig. 5. Dependence of slopes ξy on the deviation y of the beam from the unperturbed line at the x-coordinate specified in the legend. The angle θ between the wave vector k and the X axis is 45°.

下载 (127KB)
7. Fig. 6. Schematic of maximum gradients measurement by beam deflection at the bottom of the aquarium (a); video frame of measurements, a ruler and a black cloth are located at the bottom (b).

下载 (74KB)
8. Fig. 7. Digitised video frame (X, Y coordinate axes in pixels, px) shown in Fig. 2a, where image calibration is taken into account. The wave vector k of the capillary wave is rotated with respect to the X axis by the angle θ = -140°.

下载 (835KB)
9. Fig. 8. Dependence of the slope ξy of the normal to the surface on the beam displacement along the y-axis at the coordinate x = 170 mm and different orientation of the wave vector relative to the X-axis. The dotted line shows that the same in magnitude but opposite in sign surface slopes lead to different displacement along the y-axis, i.e. to asymmetry of the capillary lattice.

下载 (147KB)
10. Fig. 9. Dependence of the maximum capillary wave slope ξmax on the total capillary comb amplitude at the coordinate x = 170 mm. The angle θ of wave vector deviation from the x-axis is presented in the legend. The dotted line corresponds to the considered example.

下载 (200KB)

版权所有 © Russian academy of sciences, 2025