2023 Nobel Prize Laureates in Chemistry: Aleksey Ekimov, Louis Brus and Moungi Bawendi

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In 2023, the Nobel Prize in Chemistry was awarded to Aleksey Ekimov (Yekimov), Louis Brus and Moungi Bawendi for their work in the 80s and early 90s of the last century, which became the foundation of the physics and technology of zero-dimensional structures, quantum dots. Quantum dots are crystals of semiconductors of nanometer size (nanocrystals), with the properties determined by the quantum size eff ect. Nowadays quantum dots are widely used in various areas as optoelectronics, photovoltaics, biology, and medicine, and their synthesis is constantly being improved.

About the authors

A. V Rodina

Ioffe Institute, Russian Academy of Sciences

Email: anna.rodina@mail.ioffe.ru
Saint Petersburg, Russia

References

  1. Russian-American scientist Ekimov awarded Nobel Prize in chemistry (The Associated Press, Fort Lauderdale, Florida. 4 October 2023, 11:25 PM. AP video shot by Daniel Kozin).
  2. Екимов А. И., Онущенко А. А. Квантовый размерный эффект в трехмерных микрокристаллах полупроводников. Письма в ЖЭТФ. 1981; 34(6): 363–366.
  3. Эфрос Ал. Л., Эфрос А. Л. Межзонное поглощение света в полупроводниковом шаре. Физика и техника полупроводников. 1982; 16(7): 1209–1214.
  4. Rossetti R., Nakahara S., Brus L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. Journal of Chemical Physics. 1983; 79(2): 1086–1088. doi: 10.1063/1.445834.
  5. Efros Al. L., Brus L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano. 2021; 15: 6192– 6210. doi: 10.1021/acsnano.1c01399.
  6. Екимов А. И., Онущенко А. А. Квантовый размерный эффект в оптических спектрах полупроводниковых микрокристаллов. Физика и техника полупроводников. 1982; 16(7): 1215–1219.
  7. Екимов А. И., Онущенко А. А. Размерное квантование энергетического спектра электронов в микрокристаллах полупроводников. Письма в ЖЭТФ. 1984; 40(8): 337–340.
  8. Ekimov A. I., Efros Al. L., Onushchenko A. A. Quantum size effect in semiconductor microcrystals. Solid State Communications. 1985; 56(11): 921–924. doi: 10.1016/0038-1098(93)90275-R.
  9. Brus L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. Journal of Chemical Physics. 1983; 79(11): 5566–5571. doi: 10.1063/1.445676.
  10. Brus L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. Journal of Chemical Physics. 1984; 80(9): 4403–4409. doi: 10.1063/1.447218.
  11. Reed M. A., Bate R. T., Bradshaw K. et al. Spatial quantization in GaAs–AlGaAs multiple quantum dots. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 1986; 4(1): 358–360. doi: 10.1116/1.583331.
  12. Condon E. U., Morse P. M. Quantum Mechanics. New York, 1929.
  13. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. III: Квантовая механика. Москва, 1974.
  14. Алферов Ж. И. Двойные гетероструктуры: концепция и применения в физике, электронике и технологии (Нобелевская лекция. Стокгольм, 8 декабря 2000 г.). УФН. 2002; 172(9): 1068–1086. doi: 10.3367/UFNr.0172.200209e.1068.
  15. Dingle R., Wiegmann W., Henry C. H. Quantum states of conened carriers in very thin AlGaAs/GaAs/AlGaAs heterostructures. Physical Review Letters. 1974; 33: 827. doi: 10.1103/PhysRevLett.33.827.
  16. Arakawa Y., Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters. 1982; 40: 939–941. doi: 10.1063/1.92959.
  17. Goldstein L., Glas F., Marzin J. Y et al. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices. Applied Physics Letters. 1985; 47: 1099–1101. doi: 10.1063/1.96342.
  18. Montanarella F., Kovalenko M. V. Three millennia of nanocrystals. ACS Nano. 2022; 16: 5085–5102. doi: 10.1021/acsnano.1c11159.
  19. Freestone I., Meeks N., Sax M., Higgit C. The Lycurgus Cup — a Roman nanotechnology. Gold Bulletin. 2007; 40: 270–277.
  20. Yu K., Schanze K. S. Commemorating the Nobel Prize in Chemistry 2023 for the discovery and synthesis of quantum dots. ACS Central Science. 2023; 9: 1989–1992. doi: 10.1021/acscentsci.3c01296.
  21. Лифшиц И. М., Слезов В. В. Кинетики диффузионного распада пересыщенного твердого раствора. ЖЭТФ. 1959; 35(2):479–492.
  22. Екимов А. И., Онущенко А. А., Цехомский В. А. Экситонное поглощение кристаллами CuCl в стеклообразной матрице. Физика и химия стекла. 1980; 6(4): 511–512.
  23. Голубков В. В., Екимов А. И., Онущенко А. А., Цехомский В. А. Кинетика роста микрокристаллов CuCl в стеклообразной матрице. Физика и химия стекла. 1981; 7(4): 402–407.
  24. Гросс Е. Ф., Каррыев Н. А. Оптический спектр экситона. ДАН СССР. 1952; 84(3): 471–474.
  25. Гросс Е. Ф., Каплянский А. А. Спектроскопическое исследование поглощения и люминесценции хлористой меди, введенной в кристалл каменной соли. Оптика и спектроскопия. 1957; 2(2): 204–209.
  26. Itoh T., Kirihara T. Excitons in CuCl microcrystals embedded in NaCl. Journal of Luminescence. 1984; 31–32: 120–122. doi: 10.1016/0022-2313(84)90221-7.
  27. Екимов А. И., Онущенко А. А., Плюхин А. Г., Эфрос Ал. Л. Размерное квантование экситонов и определение параметров их энергетического спектра в CuCl. ЖЭТФ. 1985; 88(4): 1490–1501.
  28. Григорян Г. Б., Казарян Э. М., Эфрос Ал. Л., Язева Т. В. Квантование дырки и край поглощения в сферических микрокристаллах полупроводников со сложной структурой валентной зоны. Физика твердого тела. 1990; 32(6): 1772–1779.
  29. Ekimov A. I., Kudryavtsev I. A., Efros Al. L., Yazeva T. V., Hache F., Schanne-Klein M. C., Rodina A. V., Ricard D., Flytzanis C. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. Journal of the Optical Society of America B. 1993; 10: 100–107. doi: 10.1364/JOSAB.10.000100.
  30. Henglein A. Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous solution. Berichte der Bunsengesellschaft für physikalische Chemie. 1982; 86(4): 301–305. doi: 10.1002/bbpc.19820860409.
  31. Brus L. E. Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry. 1986; 90: 2555–2560. doi: 10.1021/j100403a003.
  32. Alivisatos A. P., Harris A. L., Levinos N. J. et al. Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum. Journal of Chemical Physics. 1988; 89: 4001–4011. doi: 10.1063/1.454833.
  33. Bawendi M. G., Wilson W. L., Rothberg L. et al. Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Physical Review Letters. 1990; 65(13): 1623–1626. doi: 10.1103/PhysRevLett.65.1623.
  34. Murray C. B., Norris D. J., Bawendi M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society. 1993; 115: 8706–8715. doi: 10.1021/ja00072a025.
  35. LaMer V. K., Dinegar R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society. 1950; 72: 4847—4854. doi: 10.1021/ja01167a001.
  36. Nirmal M., Murray C. B., Bawendi M. G. Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton. Physical Review B. 1994; 50(4): 2293–2300. doi: 10.1103/PhysRevB.50.2293.
  37. Nirmal M., Norris D. J., Kuno M., Bawendi M. G., Efros Al. L., Rosen M. Observation of the dark exciton in CdSe quantum dots. Physical Review Letters. 1995; 75: 3728–3731. doi: 10.1103/PhysRevLett.75.3728.
  38. Efros Al. L., Rosen M., Kuno M. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Physical Review B. 1996; 54(7): 4843–4856. doi: 10.1103/PhysRevB.54.4843.
  39. Efros Al. L. Fine structure and polarization properties of band-edge excitons in semiconductor nanocrystals. Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties. New York, 2003; 97–132. doi: 10.1201/9781420079272-3.
  40. Nirmal M., Dabbousi B. O., Bawendi M. G. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature. 1996; 383: 802–804. doi: 10.1038/383802a0.
  41. Efros Al. L., Nesbitt D. J. Origin and control of blinking in quantum dots. Nature Nanotechnol. 2016; 11: 661–671. doi: 10.1038/nnano.2016.140.
  42. Owen J., Brus L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. Journal of the American Chemical Society. 2017; 139: 10939–10943. doi: 10.1021/jacs.7b05267.
  43. Bodunov E. N., Simões Gamboa A. L. Photoluminescence decay of colloidal quantum dots: reversible trapping and the nature of the relevant trap states. Journal of Physical Chemistry. 2019; 123: 25515–25523. doi: 10.1021/acs.jpcc.9b07619.
  44. Podshivaylov E. A., Kniazeva M. A., Tarasevich A. O. et al. A quantitative model of multi-scale single quantum dot blinking. Journal of Materials Chemistry C. 2023; 11(25): 8570–8576. doi: 10.1039/D3TC00638G.
  45. Shi J., Sun W., Utzat H. et al. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nature Nanotechnology. 2021; 16: 1355–1361. doi: 10.1038/s41565-021-01016-w.
  46. Hines M., Guyot-Sionnest P. J. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry. 1996; 100: 468–471. doi: 10.1021/jp9530562.
  47. Peng X., Manna L., Yang W. et al. Shape control of CdSe nanocrystals. Nature. 2000; 404: 59–61. doi: 10.1038/35003535.
  48. Murray C. B., Kagan C. R., Bawendi M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science. 1995; 270: 1335–1338. doi: 10.1126/science.270.5240.1335.
  49. Shuklov I. A., Toknova V. F., Lizunova A. A., Razumov V. F. Controlled aging of PbS colloidal quantum dots under mild conditions. Materials Today Chemistry. 2020; 18: 100357(1–7). doi: 10.1016/j.mtchem.2020.100357.
  50. Norris D. J., Efros Al. L., Erwin S. C. Doped nanocrystals. Science. 2008; 319: 1776–1779. doi: 10.1126/science.1143802.
  51. Boles M. A., Ling D., Hyeon T. et al. The surface science of nanocrystals. Nature Materials. 2016; 15(2): 141–153. doi: 10.1038/nmat4526.
  52. Giansante С. Surface chemistry impact on the light absorption by colloidal quantum dots. Chemistry — A European Journal. 2021; 27: 14358–14368. doi: 10.1002/chem.202102168.
  53. Rodina A. V., Efros Al. L. Magnetic properties of nonmagnetic nanostructures: dangling bond magnetic polaron in CdSe nanocrystals Nano Letters. 2015; 15: 4214–4222. doi: 10.1021/acs.nanolett.5b01566.
  54. Родина А. В., Головатенко А. А., Шорникова Е. В., Яковлев Д. Р. Спиновая физика экситонов в коллоидных нанокристаллах. Физика твердого тела. 2018; 60(8): 1525–1541.
  55. Родина А. В., Яковлев Д. Р. Спины в полупроводниковых нанокристаллах. Природа. 2018; 9: 22–31.
  56. Yakovlev D. R., Rodina A. V., Shornikova E. V. et al. Coherent spin dynamics of colloidal nanocrystals. Photonic Quantum Technologies: Science and Applications. M. Benyoucef (ed.). 2023; 351–376. doi: 10.1002/9783527837427.ch15.
  57. García de Arquer F. P., Talapin D. V., Klimov V. I. et al. Semiconductor Quantum Dots: Technological Progress and Future Challenges. Science. 2021; 373(6555): 640-614. doi: 10.1126/science.aaz8541.
  58. Олейников В. А. Квантовые точки в биологии и медицине. Природа. 2010; 3: 22–28.
  59. Kagan C. R., Bassett L. C., Murray C. B., Thompson S. M. Colloidal quantum dots as platforms for quantum information science. Chemical Reviews. 2021; 121: 3186–3233. doi: 10.1021/acs.chemrev.0c00831.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies