2020 Nobel Prize Laureates in Chemistry: Emmanuelle Charpentier and Jennifer A.Doudna

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

In 2020, the Nobel Prize in Chemistry was awarded to a French professor Emmanuelle Charpentier and an American biochemist Jennifer Doudna “for the development of a method for genome editing”, namely, for the invention of genetic scissors, CRISPR/Cas9 technology. Development of this technology clearly demonstrates the importance of fundamental research. Currently, CRISPR-Cas systems and related technologies are actively used as tools for editing genomes of animals and plants, which have provided significant breakthroughs in medicine and agriculture.

作者简介

N. Zakharevich

Vavilov Institute of General Genetics, RAS

Moscow, Russia

M. Nikitin

Vavilov Institute of General Genetics, RAS; Moscow Institute of Physics and Technology, National Research University

Moscow, Russia; Dolgoprudny, Moscow Region, Russia

I. Artamonova

Vavilov Institute of General Genetics, RAS; Kharkevich Institute for Information Transmission Problems, RAS

Email: irenart@gmail.com
Moscow, Russia; Moscow, Russia

参考

  1. Abbott A. The quiet revolutionary: How the co-discovery of CRISPR explosively changed Emmanuelle Charpentier’s life. Nature. 2016; 532(7600): 432–434. doi: 10.1038/532432a.
  2. Novak R., Henriques B., Charpentier E. et al. Emergence of vancomycin tolerance in Streptococcus pneumoniae. Nature. 1999; 399(6736): 590–593. doi: 10.1038/21202.
  3. Charpentier E., Lavker R.M., Acquista E. et al. Plakoglobin suppresses epithelial proliferation and hair growth in vivo. J. Cell Biol. 2000; 149(2): 503–520. doi: 10.1083/jcb.149.2.503.
  4. Mangold M., Siller M., Roppenser B. et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol. 2004; 53(5): 1515–1527. doi: 10.1111/j.1365-2958.2004.04222.x.
  5. Deltcheva E., Chylinski K., Sharma C.M. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011; 471(7340): 602–607. doi: 10.1038/nature09886.
  6. Marino M. Biography of Jennifer A. Doudna. PNAS. 2004; 101(49): 16987–16989. doi: 10.1073/pnas.0408147101.
  7. Rogers K. Jennifer Doudna. Encyclopedia Britannica. 2020. Availability at: www.britannica.com/biography/Jennifer-Doudna
  8. Rajagopal J., Doudna J.A., Szostak J.W. Stereochemical course of catalysis by the Tetrahymena ribozyme. Science. 1989; 244(4905): 692–694. doi: 10.1126/science.2470151.
  9. Cate J.H., Gooding A.R., Podell E. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996; 273(5282): 1678–1685. doi: 10.1126/science.273.5282.1678.
  10. Ferré-D’Amaré A.R., Zhou K., Doudna J.A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998; 395(6702): 567–574. doi: 10.1038/26912.
  11. Khalil A.M. The genome editing revolution: review. J. Genet. Eng. Biotechnol. 2020; 18(1): 68. doi: 10.1186/s43141-020-00078-y.
  12. Jinek M., Chylinski K., Fonfara I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816–821. doi: 10.1126/science.1225829.
  13. Fonfara I., Richter H., Bratoviи M. et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 2016; 532(7600): 517–521. doi: 10.1038/nature17945.
  14. Lander E.S. The Heroes of CRISPR. Cell. 2016; 164(1–2): 18–28. doi: 10.1016/j.cell.2015.12.041.
  15. Mojica F.J., Ferrer C., Juez G. et al. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 1995; 17(1): 85–93. doi: 10.1111/j.1365-2958.1995.mmi_17010085.x.
  16. Mojica F.J., Dнez-Villaseсor C., Garcнa-Martнnez J. et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005; 60(2): 174–182. doi: 10.1007/s00239-004-0046-3.
  17. Gasiunas G., Barrangou R., Horvath P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS. 2012; 109(39): E2579–E2586. doi: 10.1073/pnas.1208507109.
  18. Zetsche B., Gootenberg J.S., Abudayyeh O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015; 163(3): 759–771. doi: 10.1016/j.cell.2015.09.038.
  19. Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121): 819–823. doi: 10.1126/science.1231143.
  20. Ishino Y., Shinagawa H., Makino K. et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987; 169(12): 5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987.
  21. Mojica F.J., Dнez-Villaseсor C., Soria E., Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 2000; 36(1): 244–246. doi: 10.1046/j.1365-2958.2000.01838.x.
  22. Makarova K.S., Aravind L., Grishin N.V. et al. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002; 30(2): 482–496. doi: 10.1093/nar/30.2.482.
  23. Guy C.P., Majernнk A.I., Chong J.P., Bolt E.L. A novel nuclease-ATPase (Nar71) from archaea is part of a proposed thermophilic DNA repair system. Nucleic Acids Res. 2004; 32(21): 6176–6186. doi: 10.1093/nar/gkh960.
  24. Jansen R., Embden J.D., Gaastra W., Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002; 43(6): 1565–1575. doi: 10.1046/j.1365-2958.2002.02839.x.
  25. Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading). 2005; 151(Pt 8): 2551–2561. doi: 10.1099/mic.0.28048-0.
  26. Pourcel C., Salvignol G., Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology (Reading). 2005; 151(Pt 3): 653–663. doi: 10.1099/mic.0.27437-0.
  27. Barrangou R., Fremaux C., Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315(5819): 1709–1712. doi: 10.1126/science.1138140.
  28. Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213): 1258096. doi: 10.1126/science.1258096.
  29. Makarova K.S., Grishin N.V., Shabalina S.A. et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 2006; 1: 7. doi: 10.1186/1745-6150-1-7.
  30. Brouns S.J., Jore M.M., Lundgren M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008; 321(5891): 960–964. doi: 10.1126/science.1159689.
  31. Barrangou R., Doudna J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 2016; 34(9): 933–941. doi: 10.1038/nbt.3659.
  32. Knott G.J., Doudna J.A. CRISPR-Cas guides the future of genetic engineering. Science. 2018; 361(6405): 866–869. doi: 10.1126/science.aat5011.
  33. Jinek M., East A., Cheng A. et al. RNA-programmed genome editing in human cells. Elife. 2013; 2: e00471. doi: 10.7554/eLife.00471.
  34. Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121): 823–826. doi: 10.1126/science.1232033.
  35. Ryan O.W., Skerker J.M., Maurer M.J. et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Elife. 2014; 3: e03703. doi: 10.7554/eLife.03703.
  36. Anzalone A.V., Randolph P.B., Davis J.R. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019; 576(7785): 149–157. doi: 10.1038/s41586-019-1711-4.
  37. Broughton J.P., Deng X., Yu G., et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020; 38(7): 870–874. doi: 10.1038/s41587-020-0513-4.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Издательство «Наука», 2020

##common.cookie##