Human Microbiome: Sequencing Data from Open Sources and Their Using in Independent Research

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

It is well-known that microorganisms inhabiting the human body affect the host’s health, so it is extremely important and promising to study them. Modern sequencing methods allow us to study the microbiome directly, without cultivation. Nevertheless, is it necessary to look immediately for funds for the whole-genome sequence of microbiome samples when you are interesting in comparative characterization of the microbiome of sick and healthy people or predicting the response to a significant change in diet and the use of oral therapy? Open sources already offer access to a vast array of microbiome sequencing data obtained during the past decade. However, are these data valid for independent study of the practical characteristics of the microbiome?

About the authors

M. S Nikitin

Vavilov Institute of General Genetics, RAS; Moscow Institute of Physics and Technologies

Email: mikhail.nikitin@phystech.edu
Moscow, Russia; Dolgoprudny, Moscow Oblast, Russia

N. V Zakharevich

Vavilov Institute of General Genetics, RAS

Email: zakharevich@yandex.ru
Moscow, Russia

A. S Kovtun

Vavilov Institute of General Genetics, RAS

Email: kovtunas25@gmail.com
Moscow, Russia

I. I Artamonova

Vavilov Institute of General Genetics, RAS; Kharkevich Institute for Information Transmission Problems, RAS

Email: irenart@gmail.com
Moscow, Russia; Moscow, Russia

References

  1. Daniel R. The metagenomics of soil. Nat. Rev. Microbiol. 2005; 3(6): 470–478. doi: 10.1038/nrmicro1160.
  2. Sunagawa S., Coelho L.P., Chaffron S. et al. Structure and function of the global ocean microbiome. Science. 2015; 348(6237): 1261359. doi: 10.1126/science.1261359.
  3. Baquero F., Nombela C. The microbiome as a human organ. CMI. 2012; 18: 2–4. doi: 10.1111/j.1469-0691.2012.03916.x.
  4. Gill S.R., Pop M., Deboy R. et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006; 312(5778): 1355–1359. doi: 10.1126/science.1124234.
  5. Turnbaugh P.J., Ley R.E., Hamady M. et al. The human microbiome project. Nature. 2007; 449(7164): 804–810. doi: 10.1038/nature06244.
  6. Lozupone C.A., Stombaugh J.I., Gordon J.I. et al. Diversity, stability and resilience of the human gut microbiota Nature. 2012; 489(7415): 220–230. doi: 10.1038/nature11550.
  7. Dinan T.G., Cryan J.F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012; 37(9): 1369–1378. doi: 10.1016/j.psyneuen.2012.03.007
  8. Mulle J.G., Sharp W.G., Cubells J.F. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 2013; 15(2): 337. doi: 10.1007/s11920-012-0337-0.
  9. Averina O.V., Kovtun A.S., Polyakova S.I. et al. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders. J. Med. Microbiol. 2020; 69(4): 558–571. doi: 10.1099/jmm.0.001178.
  10. Vogt N.M., Kerby R.L., Dill-McFarland K.A. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017; 7(1): 13537. doi: 10.1038/s41598-017-13601-y.
  11. Scheperjans F., Aho V., Pereira P.A. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015; 30(3): 350–358. doi: 10.1002/mds.26069.
  12. Andrews S. et al. FastQC: a quality control tool for high throughput sequence data. 2010. Available at: www.bioinformatics.babraham.ac.uk/projects/fastqc.
  13. Bolger A. M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15): 2114–2120. doi: 10.1093/bioinformatics/btu170.
  14. Langmead B., Trapnell C., Pop M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biol. 2009; 10(3): R25. doi: 10.1186/gb-2009-10-3-r25
  15. Nurk S., Meleshko D., Korobeynikov A., Pevzner P.A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017; 27(5): 824–834. doi: 10.1101/gr.213959.116.
  16. Glümer C., Jшrgensen T., Borch-Johnsen K. Prevalences of diabetes and impaired glucose regulation in a Danish population: the Inter99 study. Diabetes care. 2003; 26(8): 2335–2340. doi: 10.2337/diacare.26.8.2335.
  17. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464(7285): 59–65. doi: 10.1038/nature08821.
  18. Le Chatelier E., Nielsen T., Qin J. et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013; 500(7464): 541–546. doi: 10.1038/nature12506.
  19. Nishijima S., Suda W., Oshima K. et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Research. 2016; 23(2): 125–133. doi: 10.1093/dnares/dsw002.
  20. Tyakht A.V., Kostryukova E., Popenko A. et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat. commun. 2013; 4: 2469. doi: 10.1038/ncomms3469.
  21. Qin J., Li Y., Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490(7418): 55–60. doi: 10.1038/nature11450.
  22. Karlsson F.H., Nookaew I., Nielsen J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput Biol. 2014; 10(7): e1003706. doi: 10.1371/journal.pcbi.1003706.
  23. Kelley D.R., Schatz M.C., Salzberg S.L. Quake: quality-aware detection and correction of sequencing errors. Genome biol. 2010; 11(11): R116. doi: 10.1186/gb-2010-11-11-r116.
  24. Nikolenko S.I., Korobeynikov A.I., Alekseyev M.A. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC genomics. 2013; 14(Suppl 1): S7. doi: 10.1186/1471-2164-14-S1-S7.
  25. Benson D.A. Cavanaugh M., Clark K. et al. GenBank. Nucleic Acids Res. 2013; 41(Database issue): D36–D42. doi: 10.1093/nar/gks1195.
  26. Altschul S.F., Madden T.L., Schäffer A.A. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17): 3389–3402. doi: 10.1093/nar/25.17.3389.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies