Autism Spectrum Disorders: Looking for a Prism to Break Up for the Subtypes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, currently diagnosed in more than 2% of children. The core symptoms of ASD are impairments in communicative and social functions and narrow and repetitive pattern of behavior. ASD is characterized by both symptomatic and genetic heterogeneity, which is an obstacle to the development of effective therapy. The recognition of several subtypes of autism according to the common pathogenic mechanisms is becoming increasingly relevant. One of such subtypes is autism associated with maternal immune activation in pregnancy, that activates production of autoantibodies to fetal neuronal proteins and thereby disruption of normal neurodevelopment. Other difficulties in ASD differential diagnosis bring PANS/PANDAS syndromes — post-infectious autoimmune sequelae with pronounced neuropsychiatric symptoms. The connection of genetic and immune ASD patterns with the mTOR signaling pathway, frequently hyperactivated in autism, is also discussed.

Авторлар туралы

E. Trifonova

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: et@bionet.nsc.ru
Novosibirsk, Russia

A. Pashchenko

Novosibirsk State University

Novosibirsk, Russia

S. Lashin

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

Әдебиет тізімі

  1. Wing L. The autistic spectrum. Lancet. 1997; 350(9093): 1761–1766. doi: 10.1016/S0140-6736(97)09218-0.
  2. Kasari C., Brady N., Lord C., Tager-Flusberg H. Assessing the minimally verbal school-aged child with autism spectrum disorder. Autism Res. 2013; 6(6): 479–493. doi: 10.1002/aur.1334.
  3. Treffert D.A. The savant syndrome: an extraordinary condition. A synopsis: past, present, future. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2009; 364(1522): 1351–1357. doi: 10.1098/rstb.2008.0326.
  4. Shenouda J., Barrett E., Davidow A.L. et al. prevalence and disparities in the detection of autism without intellectual disability. Pediatrics. 2023; 151(2): e2022056594. doi: 10.1542/peds.2022-056594.
  5. El-Fishawy P., State M.W. The genetics of autism: key issues, recent findings, and clinical implications. Psychiatr. Clin. North Am. 2010; 33(1): 83–105. doi: 10.1016/j.psc.2009.12.002.
  6. Elizondo-Plazas A., Ibarra-Ramírez M., Garza-Báez A. et al. Expanding the phenotype of mTOR-related disorders and the Smith-Kingsmore syndrome. Neurol Genet. 2020; 6(3): e432. doi: 10.1212/NXG.0000000000000432.
  7. Trifonova E.A., Klimenko A.I., Mustafin Z.S. et al. The mTOR signaling pathway activity and vitamin D availability control the expression of most autism predisposition genes. Int. J. Mol. Sci. 2019; 20(24): 6332. doi: 10.3390/ijms20246332.
  8. Onore C., Yang H., Van de Water J. et al. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 2017; 5: 43. doi: 10.3389/fped.2017.00043.
  9. Tylee D.S., Hess J.L., Quinn T.P. et al. Blood transcriptomic comparison of individuals with and without autism spectrum disorder: A combined-samples mega-analysis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2017; 174: 181–201. doi: 10.1002/ajmg.b.32511.
  10. Khlebodarova T.M., Kogai V.V., Trifonova E.A. et al. Dynamic landscape of the local translation at activated synapses. Mol. Psychiatry. 2018; 23: 107–114. doi: 10.1038/mp.2017.245.
  11. Pardo C.A., Vargas D.L., Zimmerman A.W. Immunity, neuroglia and neuroinflammation in autism. Int. Rev. Psychiatry 2005; 17:485–495. doi: 10.1080/02646830500381930.
  12. Eltokhi A., Janmaat I.E., Genedi M. et al. Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. J. Neurosci. Res. 2020; 98: 1335–1369. doi: 10.1002/jnr.24616.
  13. Alam M.M., Zhao X.F., Liao Y. et al. Deficiency of microglial autophagy increases the density of oligodendrocytes and susceptibility to severe forms of seizures. eNeuro. 2021; 8(1): ENEURO.0183-20.2021. doi: 10.1523/ENEURO.0183-20.2021.
  14. Liu Y., Zhang D.T., Liu X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 2015; 34: 50–66. doi: 10.3109/08830185.2014.933957.
  15. Hughes H.K., Mills Ko E., Rose D. et al. Immune dysfunction and autoimmunity as pathological mechanisms in autism spectrum disorders. Front. Cell. Neurosci. 2018; 12: 405. doi: 10.3389/fncel.2018.00405.
  16. Wu S., Ding Y., Wu F. et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2015; 55: 322–332. doi: 10.1016/j.neubiorev.2015.05.004.
  17. Ashwood P., van de Water J. Is autism an autoimmune disease? Autoimmun. Rev. 2004; 3: 557–3562. doi: 10.1016/j.autrev.2004.07.036.
  18. Edmiston E., Ashwood P., van de Water J. Autoimmunity, autoantibodies, and autism spectrum disorder. Biol. Psychiatry. 2017; 81:383–390. doi: 10.1016/j.biopsych.2016.08.031.
  19. Ramirez-Celis A., Becker M., Nuño M. et al. Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): a subtype of autism. Mol. Psychiatry. 2021; 26(5): 1551–1560. doi: 10.1038/s41380-020-00998-8.
  20. Jiang H.-Y., Xu L.-L., Shao L. et al. Maternal infection during pregnancy and risk of autism spectrum disorders: a systematic review and meta-analysis. Brain Behav. Immun. 2016; 58: 165–172. doi: 10.1016/j.bbi.2016.06.005.
  21. Lee B.K., Magnusson C., Gardner R.M. et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav. Immun. 2015; 44: 100–105. doi: 10.1016/j.bbi.2014.09.001.
  22. Lombardo M.V., Moon H.M., Su J. et al. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol. Psychiatry. 2018; 23: 1001–1013. doi: 10.1038/mp.201.
  23. Williams K.A., Swedo S.E. Post-infectious autoimmune disorders: Sydenham’s chorea, PANDAS and beyond. Brain Res. 2015; 1617:144–154. doi: 10.1016/j.brainres.2014.09.071.
  24. Cunningham M.W. Rheumatic fever, autoimmunity, and molecular mimicry: The streptococcal connection. Int. Rev. Immunol. 2014; 33: 314–329. doi: 10.3109/08830185.2014.917411.
  25. Eckes T., Buhlmann U., Holling H.D. et al. Comprehensive ABA-based interventions in the treatment of children with autism spectrum disorder — a meta-analysis. BMC Psychiatry. 2023; 23(1): 133. doi: 10.1186/s12888-022-04412-1.
  26. Hodgson R., Biswas M., Palmer S. et al. Intensive behavioural interventions based on applied behaviour analysis (ABA) for young children with autism: A cost-effectiveness analysis. PLoS One. 2022; 17(8): e0270833. doi: 10.1371/journal.pone.0270833.
  27. Ehninger D., Han S., Shilyansky C. et al. Reversal of learning deficits in a Tsc2+/– mouse model of tuberous sclerosis. Nat. Med. 2008; 14(8): 843–848. doi: 10.1038/nm1788.
  28. Jia F., Wang B., Shan L. et al. Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 2015; 135(1): e196–198. doi: 10.1542/peds.2014-2121.
  29. Shimasaki C., Frye R.E., Trifiletti R. et al. Evaluation of the Cunningham Panel™ in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): Changes in antineuronal antibody titers parallel changes in patient symptoms. J. Neuroimmunol. 2020; 339: 577138. doi: 10.1016/j.jneuroim.2019.577138.
  30. Dean S.L., Singer H.S. Treatment of Sydenham’s chorea: a review of the current evidence. Tremor Other Hyperkinet. Mov. (NY). 2017; 7: 456. doi: 10.7916/D8W95GJ2.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Издательство «Наука», 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>