Современная кристаллография в науках о Земле
- Авторы: Пущаровский Д.Ю1
-
Учреждения:
- Московский государственный университет имени М.В.Ломоносова
- Выпуск: № 1 (2022)
- Страницы: 13-28
- Раздел: Статьи
- URL: https://journals.eco-vector.com/0032-874X/article/view/627675
- DOI: https://doi.org/10.7868/S0032874X22010021
- ID: 627675
Цитировать
Полный текст



Аннотация
Кристаллография, рожденная в XVII в. на стыке минералогии и математики, в дальнейшем стала рассматриваться как наука, более близкая к физике, химии, биологии и даже к медицине. В статье на конкретных примерах показана важная роль самых современных кристаллографических методов и результатов исследований в изучении состава и строения Земли и других планет.
Об авторах
Д. Ю Пущаровский
Московский государственный университет имени М.В.Ломоносова
Email: dmitp@geol.msu.ru
Москва, Россия
Список литературы
- Пущаровский Д.Ю. Современная кристаллография: полезна ли она наукам о Земле? Вестн. Моск. ун-та. Сер.4. Геология. 2022; 1: 3–23.
- Ferraris C., Weinert O., Ferraris G. La correspondance entre Henri Hureau de Sénarmont et Quintino Sella. Saggi e Studi, Rivista di Storia dell’Universitа di Torino. 2020; IX.2: 51–127.
- Pereira A.L.J., Gracia L., Santamarнa-Pérez D. et al. Structural and vibrational study of cubic Sb2O3 under high pressure. Physical Review. 2012; B.85(17). doi: 10.1103/physrevb.85.174108.
- Ferraris G. Early contributions of crystallography to the atomic theory of matter. Substantia. 2019; 3(1): 131–138. doi: 10.13128/Substantia-81.
- Wagner T., Schönleber A. A non-mathematical introduction to the superspace description of modulated structures. Acta Crystallographica Section B. Structural Science. 2009; 65(3): 249–268. doi: 10.1107/s0108768109015614.
- Bindi L., Nespolo M., Krivovichev S.V. et al. Producing highly complicated materials. Nature does it better. Rep. Prog. Phys. 2020; 83: 106501. doi: 10.1088/1361-6633/abaa3a.
- Болотина Н.Б. Рентгеноструктурный анализ модулированных кристаллов. Обзор. Кристаллография. 2007; 52(4): 673–685.
- Arakcheeva A., Bindi L., Pattison P. et al. The incommensurately modulated structures of natural natrite at 120 and 293 K from synchrotron X-ray data. Amer.Mineral. 2010; 95(4): 574–581. doi: 10.2138/am.2010.3384.
- De Wolff P.M. The Pseudo-Symmetry of Modulated Crystal Structures. Acta Crystallographica. Section A. 1974; 30(6): 777–785. doi: 10.1107/s0567739474010710.
- Janner A., Janssen T. From crystal morphology to molecular and scale crystallography. Physica Scripta. 2015; 90(8): 088007. doi: 10.1088/0031-8949/90/8/088007.
- Dam B., Janner A., Donnay J.D.H. Incommensurate morphology of calaverite (AuTe2) crystals. Physical Review Letters. 1985; 55: 2301–2304.
- Bindi L., Steinhardt P.J., Yao N., Lu P.J. Natural quasicrystals. Science. 2009; 324: 1306–1309.
- Schechtman D., Blech I., Gratias D., Cahn J.W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 1984; 53: 1951–1953.
- Hargittai I., Hargittai B. Physics Nobel laureate Roger Penrose and the Penrose pattern as a forerunner of generalized crystallography. Struct Chem. 2020; 32: 1–7. doi: 10.1007/s11224-020-01669-8.
- Bindi L., Kolb W., Eby G.N. et al. Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test. Proceedings of the National Academy of Sciences. 2021; 118 (22): e2101350118. doi: 10.1073/pnas.2101350118.
- BarlowW. Probable Nature of the Internal Symmetry of Crystals. Nature. 1883; 29: 186–188. doi: 10.1038/029186a0.
- Grew E.S., Hystad G., Hazen R.M. et al. How many boron minerals occur in Earth’s upper crust? American Mineralogist. 2017; 102(8): 1573–1587. doi: 10.2138/am-2017-5897.
- Barton I.F. Trends in the discovery of new minerals over the last century. Amer. Mineral. 2019; 104(5): 641–651.
- Rozhdestvenskaya I., Mugnaioli E., Czank M.et al. The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0nH2O, solved by conventional and automated electron diffraction. Mineralogical Magazine. 2010; 74(01): 159–177. doi: 10.1180/minmag.2010.074.1.159.
- Sarp H., Pushcharovsky D.Y., MacLean E.J. et al. Tillmannsite, (Ag3Hg)(V,As)O4, a new mineral: its description and crystal structure. European Journal of Mineralogy. 2003; 15(1): 177–180. doi: 10.1127/0935-1221/2003/0015-0177.
- Weil M., Tillmanns E., Pushcharovsky D.Yu. Hydrothermal Single-Crystal Growth in the Systems Ag/Hg/X/O (X = VV,AsV): Crystal Structures of (Ag3Hg)VO4, (Ag2Hg2)3(VO4)4, and (Ag2Hg2)2(HgO2)(AsO4)2 with the Unusual Tetrahedral Cluster Cations (Ag3Hg)3+ and (Ag2Hg2)4+ and Crystal Structure of AgHgVO4. Inorg. Chem. 2005; 44: 1443–1451.
- Pluth J.J., Smith J.V., Pushcharovsky D.Y., et al. Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, Na3Mn3Ti0.25Si8O20(OH)2·10H2O, opens up new chemistry and physics of low-temperature minerals. Proc. Natl. Acad. Sci. USA. 1997; 94: 12263–12267. doi: 10.1073/pnas.94.23.12263.
- Pushcharovsky D.Y., Zubkova N.V., Pekov I.V. Structural chemistry of silicates: new discoveries and ideas. Struct. Chem. 2016; 27(6): 1593–1603. doi: 10.1007/s11224-016-0750-9.
- Yang H., Konzett J., Prewitt Ch.T. Crystal structure of a new (21)-clinopyribole synthesized at high temperature and pressure. Amer. Mineral. 2001; 86: 1261–1266.
- Capitani G. Synchysite-(Ce) from Cinquevalli (Trento, Italy): Stacking Disorder and the Polytypism of (Ca,REE)-Fluorcarbonates. Minerals. 2020; 10(1): 77. doi: 10.3390/min10010077.2005
- Пущаровский Ю.М. Сейсмотомография и структура мантии: тектонический ракурс. Докл. АН. 1996; 351(6): 806–809.
- Пущаровский Ю.М., Пущаровский Д.Ю. Геология мантии Земли. M., 2010.
- Пущаровский Ю.М. О трех парадигмах в геологии. Геотектоника. 1995; 1: 4–11.
- Pushcharovsky D.Yu., Pushcharovsky Yu.M. The mineralogy and the origin of deep geospheres: a review. Earth Sci. Rev. 2012; 113: 104–109.
- Пущаровский Д.Ю. Минералогическая кристаллография. М., 2020.
- Irifune T., Fujino K., Ohtani E. A new high pressure form of MgAl2O4. Nature. 1991; 349: 409–411.
- Oganov A.R., Gillan M.J., Price G.D. Structural stability of silica at high pressures and temperatures. Phys. Rev. 2005; 71(6): 064104–8. doi: 10.1103/physrevb.71.064104.
- Пущаровский Д.Ю. Железо и его соединения в ядре Земли: новые данные и идеи. Геохимия. 2019; 9: 936–947. doi: 10.1134/S0016702919090088.
- Pushcharovsky D.Y., Balitsky D.V., Bindi L. The Importance of Crystals and Crystallography in Space Research Programs. Crystallogr. Rep. 2021; 66: 934–939. doi: 10.1134/S1063774521060298.
- Shul’pina I.L., Zakharov B.G., Parfen’ev R.V., et al. Some results of the growth of semiconductor crystals in microgravity conditions (to the 50th anniversary of Yuri Gagarin’s flight into space). Phys. Solid State. 2012; 54: 1340. doi: 10.1134/s1063783412070323.
- Snell E.H., Helliwell J.R. Microgravity as an environment for macromolecular crystallization — an outlook in the era of space stations and commercial space flight. Crystallogr. Rev. 2021; 27(1): 3–46. doi: 10.1080/0889311X.2021.1900833.
- Bish D.L., Blake D.F., Vaniman D.T. et al. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science. 2013; 341(6153): 1238932–1238932. doi: 10.1126/science.1238932.
- Faurel B., Durand E., Maurice S. et al. New Developments on ChemCam Laser Transmitter and Potential Applications for other Planetology Programs. Proceedings Volume 10564, International Conference on Space Optics — ICSO 2012. 2012; 105642I(2017): 105642I-2-9. doi: 10.1117/12.2309236.
- Maurice S., Wiens R.C., Bernardi P. et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021; 2174(7): 108. doi: 10.1007/s11214-021-00807-w.
- Novikova N., Sorokina N., Verin I. et al. Structural Reasons for the Nonlinear Optical Properties of KTP Family Single Crystals. Crystals. 2018; 8(7): 283. doi: 10.3390/cryst8070283.
- Balitsky D., Villeval P., Lupinski D. Growth of Large Scale Nonlinear LBO and Electro-optic RTP Crystals: State of the Art and Applications. Advanced Solid State Lasers. 2015. doi: 10.1364/assl.2015.am1a.2.
- Balitsky D., Villeval P., Lupinski D. Elaboration of large LBO and RTP crystals for nonelinear and electro optic applications. ICCGE-19/OMVPE-19 Program and Abstracts Book. 2019. Friday, August 2, Symposium: Fundamentals of Crystal Growth: Colloids and Crystal Growth in Solution. P.8.30–8.45.
- Witze A. A Month on Mars: What NASA’s Perseverance Rover Has Found So Far. Nature. 2021; 591: 509–510. doi: 10.1038/d41586-021-00698-5.
- Li J., Ma Z., He C. et al. An effective strategy to achieve deeper coherent light for LiB3O5. Journal of Materials Chemistry C. 2016; 4(10): 1926–1934. doi: 10.1039/c5tc03814f.
Дополнительные файлы
