Modern Crystallography in Geosciences

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Crystallography was born in the 17th century as a cross-disciplinary science of mineralogy and mathematics. However, later it became closer to physics, chemistry, biology, and even medicine. The article considers on various precise examples the important role of modern crystallographic methods and results in the study of the composition and structure of the Earth and other planets

About the authors

D. Yu Pushcharovsky

Lomonosov Moscow State University

Email: dmitp@geol.msu.ru
Moscow, Russia

References

  1. Пущаровский Д.Ю. Современная кристаллография: полезна ли она наукам о Земле? Вестн. Моск. ун-та. Сер.4. Геология. 2022; 1: 3–23.
  2. Ferraris C., Weinert O., Ferraris G. La correspondance entre Henri Hureau de Sénarmont et Quintino Sella. Saggi e Studi, Rivista di Storia dell’Universitа di Torino. 2020; IX.2: 51–127.
  3. Pereira A.L.J., Gracia L., Santamarнa-Pérez D. et al. Structural and vibrational study of cubic Sb2O3 under high pressure. Physical Review. 2012; B.85(17). doi: 10.1103/physrevb.85.174108.
  4. Ferraris G. Early contributions of crystallography to the atomic theory of matter. Substantia. 2019; 3(1): 131–138. doi: 10.13128/Substantia-81.
  5. Wagner T., Schönleber A. A non-mathematical introduction to the superspace description of modulated structures. Acta Crystallographica Section B. Structural Science. 2009; 65(3): 249–268. doi: 10.1107/s0108768109015614.
  6. Bindi L., Nespolo M., Krivovichev S.V. et al. Producing highly complicated materials. Nature does it better. Rep. Prog. Phys. 2020; 83: 106501. doi: 10.1088/1361-6633/abaa3a.
  7. Болотина Н.Б. Рентгеноструктурный анализ модулированных кристаллов. Обзор. Кристаллография. 2007; 52(4): 673–685.
  8. Arakcheeva A., Bindi L., Pattison P. et al. The incommensurately modulated structures of natural natrite at 120 and 293 K from synchrotron X-ray data. Amer.Mineral. 2010; 95(4): 574–581. doi: 10.2138/am.2010.3384.
  9. De Wolff P.M. The Pseudo-Symmetry of Modulated Crystal Structures. Acta Crystallographica. Section A. 1974; 30(6): 777–785. doi: 10.1107/s0567739474010710.
  10. Janner A., Janssen T. From crystal morphology to molecular and scale crystallography. Physica Scripta. 2015; 90(8): 088007. doi: 10.1088/0031-8949/90/8/088007.
  11. Dam B., Janner A., Donnay J.D.H. Incommensurate morphology of calaverite (AuTe2) crystals. Physical Review Letters. 1985; 55: 2301–2304.
  12. Bindi L., Steinhardt P.J., Yao N., Lu P.J. Natural quasicrystals. Science. 2009; 324: 1306–1309.
  13. Schechtman D., Blech I., Gratias D., Cahn J.W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 1984; 53: 1951–1953.
  14. Hargittai I., Hargittai B. Physics Nobel laureate Roger Penrose and the Penrose pattern as a forerunner of generalized crystallography. Struct Chem. 2020; 32: 1–7. doi: 10.1007/s11224-020-01669-8.
  15. Bindi L., Kolb W., Eby G.N. et al. Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test. Proceedings of the National Academy of Sciences. 2021; 118 (22): e2101350118. doi: 10.1073/pnas.2101350118.
  16. BarlowW. Probable Nature of the Internal Symmetry of Crystals. Nature. 1883; 29: 186–188. doi: 10.1038/029186a0.
  17. Grew E.S., Hystad G., Hazen R.M. et al. How many boron minerals occur in Earth’s upper crust? American Mineralogist. 2017; 102(8): 1573–1587. doi: 10.2138/am-2017-5897.
  18. Barton I.F. Trends in the discovery of new minerals over the last century. Amer. Mineral. 2019; 104(5): 641–651.
  19. Rozhdestvenskaya I., Mugnaioli E., Czank M.et al. The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0nH2O, solved by conventional and automated electron diffraction. Mineralogical Magazine. 2010; 74(01): 159–177. doi: 10.1180/minmag.2010.074.1.159.
  20. Sarp H., Pushcharovsky D.Y., MacLean E.J. et al. Tillmannsite, (Ag3Hg)(V,As)O4, a new mineral: its description and crystal structure. European Journal of Mineralogy. 2003; 15(1): 177–180. doi: 10.1127/0935-1221/2003/0015-0177.
  21. Weil M., Tillmanns E., Pushcharovsky D.Yu. Hydrothermal Single-Crystal Growth in the Systems Ag/Hg/X/O (X = VV,AsV): Crystal Structures of (Ag3Hg)VO4, (Ag2Hg2)3(VO4)4, and (Ag2Hg2)2(HgO2)(AsO4)2 with the Unusual Tetrahedral Cluster Cations (Ag3Hg)3+ and (Ag2Hg2)4+ and Crystal Structure of AgHgVO4. Inorg. Chem. 2005; 44: 1443–1451.
  22. Pluth J.J., Smith J.V., Pushcharovsky D.Y., et al. Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, Na3Mn3Ti0.25Si8O20(OH)2·10H2O, opens up new chemistry and physics of low-temperature minerals. Proc. Natl. Acad. Sci. USA. 1997; 94: 12263–12267. doi: 10.1073/pnas.94.23.12263.
  23. Pushcharovsky D.Y., Zubkova N.V., Pekov I.V. Structural chemistry of silicates: new discoveries and ideas. Struct. Chem. 2016; 27(6): 1593–1603. doi: 10.1007/s11224-016-0750-9.
  24. Yang H., Konzett J., Prewitt Ch.T. Crystal structure of a new (21)-clinopyribole synthesized at high temperature and pressure. Amer. Mineral. 2001; 86: 1261–1266.
  25. Capitani G. Synchysite-(Ce) from Cinquevalli (Trento, Italy): Stacking Disorder and the Polytypism of (Ca,REE)-Fluorcarbonates. Minerals. 2020; 10(1): 77. doi: 10.3390/min10010077.2005
  26. Пущаровский Ю.М. Сейсмотомография и структура мантии: тектонический ракурс. Докл. АН. 1996; 351(6): 806–809.
  27. Пущаровский Ю.М., Пущаровский Д.Ю. Геология мантии Земли. M., 2010.
  28. Пущаровский Ю.М. О трех парадигмах в геологии. Геотектоника. 1995; 1: 4–11.
  29. Pushcharovsky D.Yu., Pushcharovsky Yu.M. The mineralogy and the origin of deep geospheres: a review. Earth Sci. Rev. 2012; 113: 104–109.
  30. Пущаровский Д.Ю. Минералогическая кристаллография. М., 2020.
  31. Irifune T., Fujino K., Ohtani E. A new high pressure form of MgAl2O4. Nature. 1991; 349: 409–411.
  32. Oganov A.R., Gillan M.J., Price G.D. Structural stability of silica at high pressures and temperatures. Phys. Rev. 2005; 71(6): 064104–8. doi: 10.1103/physrevb.71.064104.
  33. Пущаровский Д.Ю. Железо и его соединения в ядре Земли: новые данные и идеи. Геохимия. 2019; 9: 936–947. doi: 10.1134/S0016702919090088.
  34. Pushcharovsky D.Y., Balitsky D.V., Bindi L. The Importance of Crystals and Crystallography in Space Research Programs. Crystallogr. Rep. 2021; 66: 934–939. doi: 10.1134/S1063774521060298.
  35. Shul’pina I.L., Zakharov B.G., Parfen’ev R.V., et al. Some results of the growth of semiconductor crystals in microgravity conditions (to the 50th anniversary of Yuri Gagarin’s flight into space). Phys. Solid State. 2012; 54: 1340. doi: 10.1134/s1063783412070323.
  36. Snell E.H., Helliwell J.R. Microgravity as an environment for macromolecular crystallization — an outlook in the era of space stations and commercial space flight. Crystallogr. Rev. 2021; 27(1): 3–46. doi: 10.1080/0889311X.2021.1900833.
  37. Bish D.L., Blake D.F., Vaniman D.T. et al. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science. 2013; 341(6153): 1238932–1238932. doi: 10.1126/science.1238932.
  38. Faurel B., Durand E., Maurice S. et al. New Developments on ChemCam Laser Transmitter and Potential Applications for other Planetology Programs. Proceedings Volume 10564, International Conference on Space Optics — ICSO 2012. 2012; 105642I(2017): 105642I-2-9. doi: 10.1117/12.2309236.
  39. Maurice S., Wiens R.C., Bernardi P. et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021; 2174(7): 108. doi: 10.1007/s11214-021-00807-w.
  40. Novikova N., Sorokina N., Verin I. et al. Structural Reasons for the Nonlinear Optical Properties of KTP Family Single Crystals. Crystals. 2018; 8(7): 283. doi: 10.3390/cryst8070283.
  41. Balitsky D., Villeval P., Lupinski D. Growth of Large Scale Nonlinear LBO and Electro-optic RTP Crystals: State of the Art and Applications. Advanced Solid State Lasers. 2015. doi: 10.1364/assl.2015.am1a.2.
  42. Balitsky D., Villeval P., Lupinski D. Elaboration of large LBO and RTP crystals for nonelinear and electro optic applications. ICCGE-19/OMVPE-19 Program and Abstracts Book. 2019. Friday, August 2, Symposium: Fundamentals of Crystal Growth: Colloids and Crystal Growth in Solution. P.8.30–8.45.
  43. Witze A. A Month on Mars: What NASA’s Perseverance Rover Has Found So Far. Nature. 2021; 591: 509–510. doi: 10.1038/d41586-021-00698-5.
  44. Li J., Ma Z., He C. et al. An effective strategy to achieve deeper coherent light for LiB3O5. Journal of Materials Chemistry C. 2016; 4(10): 1926–1934. doi: 10.1039/c5tc03814f.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies