Antidepressant Resistance: Why It Occurs and What to Do About It?

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Antidepressant resistance poses one of the biggest challenges to modern neuropharmacology. Here we will try to consider the problem in terms of the serotonin system. What are its features and how can they cause therapeutic resistance? In addition, special attention will be paid to serotonin receptors, whose amazing biology not only shed light on the mechanisms of depressive disorders, but also promise to provide the key to the effective therapy of the latters.

作者简介

A. Tsybko

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

Email: antoncybko@mail.ru
Novosibirsk, Russia

参考

  1. Kendall K.M., Van Assche E., Andlauer T.F.M. et al. The genetic basis of major depression. Psychol. Med. 2021; 51: 2217–2230. doi: 10.1017/S0033291721000441.
  2. Maffioletti E., Minelli A., Tardito, D. et al. Blues in the brain and beyond: molecular bases of major depressive disorder and relative pharmacological and non-pharmacological treatments. Genes (Basel). 2020; 11(9): 1089. doi: 10.3390/genes11091089.
  3. Halaris A., Sohl E., Whitham E.A. Treatment-resistant depression revisited: A Glimmer of Hope. J. Pers. Med. 2021; 11(2): 155. doi: 10.3390/jpm11020155.
  4. Olivier B. Serotonin: A never-ending story. Eur. J. Pharmacol. 2015; 753: 2–18. doi: 10.1016/j.ejphar.2014.10.031.
  5. Ren J., Friedmann D., Xiong J. et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell. 2018; 175(2): 472–487.e20. doi: 10.1016/j.cell.2018.07.043.
  6. Mann J.J., Huang Y.Y., Underwood M.D. et al. A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch. Gen. Psychiatry. 2000; 57(8): 729–738. doi: 10.1001/archpsyc.57.8.729.
  7. Austin M.C., Whitehead R.E., Edgar C.L. et al. Localized decrease in serotonin transporter-immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide. Neuroscience. 2002; 114(3): 807–815. doi: 10.1016/s0306-4522(02)00289-0.
  8. Underwood M.D., Kassir S.A., Bakalian M.J. et al. Neuron density and serotonin receptor binding in prefrontal cortex in suicide. Int. J. Neuropsychopharmacol. 2012; 15(4): 435–447. doi: 10.1017/S1461145711000691.
  9. Rajkowska G., Mahajan G., Legutko B. et al. Length of axons expressing the serotonin transporter in orbitofrontal cortex is lower with age in depression. Neuroscience. 2017; 359: 30–39. doi: 10.1016/j.neuroscience.2017.07.006.
  10. Albert P.R., Vahid-Ansari F., Luckhart C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front. Behav. Neurosci. 2014; 8: 199. doi: 10.3389/fnbeh.2014.00199.
  11. Sharp T., Boothman L., Raley J., Quérée P. Important messages in the “Post”: Recent Discoveries in 5-HT Neurone Feedback Control. Trends Pharmacol. Sci. 2007; 28(12): 629–636, doi: 10.1016/j.tips.2007.10.009.
  12. Kempermann G., Gage F.H., Aigner L. et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell. 2018; 23(1): 25–30, doi: 10.1016/j.stem.2018.04.004.
  13. Klempin F., Babu H., De Pietri Tonelli D. et al. Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Front. Mol. Neurosci. 2010; 3: 14. doi: 10.3389/fnmol.2010.00014.
  14. Samuels B.A., Anacker C., Hu A. et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. Nat. Neurosci. 2015; 18(11): 1606–1616. doi: 10.1038/nn.4116.
  15. Zanderigo F., Pantazatos S., Rubin-Falcone H. et al. In vivo relationship between serotonin 1A receptor binding and gray matter volume in the healthy brain and in major depressive disorder. Brain Struct. Funct. 2018; 223(6): 2609–2625. doi: 10.1007/s00429-018-1649-6.
  16. Maroteaux L., Béchade C., Roumier A. Dimers of serotonin receptors: impact on ligand affinity and signaling. Biochimie. 2019; 161: 23–33. doi: 10.1016/j.biochi.2019.01.009.
  17. Borroto-Escuela D.O., Li X., Tarakanov A.O. et al. Existence of brain 5-HT1A-5-HT2A isoreceptor complexes with antagonistic allosteric receptor-receptor interactions regulating 5-HT1A receptor recognition. ACS Omega. 2017; 2(8): 4779–4789. doi: 10.1021/acsomega.7b00629.
  18. Naumenko V.S., Popova N.K., Lacivita E. et al. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther. 2014; 20: 582–590. doi: 10.1111/cns.12247.
  19. Rodnyy A.Y., Kondaurova E.M., Bazovkina D.V. et al. Serotonin 5-HT(7) receptor overexpression in the raphe nuclei area produces antidepressive effect and affects brain serotonin system in male mice. J. Neurosci. Res. 2022; 100: 1506–1523. doi: 10.1002/jnr.25055.
  20. Ilchibaeva T., Tsybko A., Zeug A. et al. Serotonin receptor 5-HT(2A) regulates TrkB receptor function in heteroreceptor complexes. Cells. 2022; 11(15): 2384. doi: 10.3390/cells11152384.
  21. Barnes N.M., Ahern G.P., Becamel C. et al. International union of basic and clinical pharmacology. CX. Classification of Receptors for 5-Hydroxytryptamine; Pharmacology and Function. Pharmacol. Rev. 2021; 73(11): 310–520. doi: 10.1124/pr.118.015552.
  22. Gorinski N., Bijata M., Prasad S. et al. Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat. Commun. 2019; 10(1): 3924. doi: 10.1038/s41467-019-11876-5.
  23. Vahid-Ansari F., Zhang M., Zahrai A., Albert P.R. Overcoming resistance to selective serotonin reuptake inhibitors: targeting serotonin, serotonin-1A receptors and adult neuroplasticity. Front. Neurosci. 2019; 13: 404. doi: 10.3389/fnins.2019.00404.
  24. Albert P.R., Le François B., Vahid-Ansari F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: the 5-HT1A receptor gene as a paradigm. J. Psychiatry Neurosci. 2019; 44: 164–176. doi: 10.1503/jpn.180209.
  25. Donaldson Z.R., Nautiyal K.M., Ahmari S.E., Hen R. Genetic approaches for understanding the role of serotonin receptors in mood and behavior. Curr. Opin. Neurobiol. 2013; 23: 399–406. doi: 10.1016/j.conb.2013.01.011.
  26. Kulikova E.A., Bazovkina D.V., Akulov A.E. et al. Alterations in pharmacological and behavioural responses in recombinant mouse line with an increased predisposition to catalepsy: role of the 5-HT1A receptor. Br. J. Pharmacol. 2016; 173(13): 2147–2161. doi: 10.1111/bph.13484.
  27. Kondaurova E.M., Rodnyy A.Y., Ilchibaeva T.V. et al. Genetic background underlying 5-Ht1a receptor functioning affects the response to fluoxetine. Int. J. Mol. Sci. 2020; 21(22): 8784. doi: 10.3390/ijms21228784.
  28. Richardson-Jones J.W., Craige C.P., Guiard B.P. et al. 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron. 2010; 65(1): 40–52. doi: 10.1016/j.neuron.2009.12.003.
  29. Bach H., Arango V. Neuroanatomy of Serotonergic Abnormalities in Suicide. Dwivedi Y. (ed.). Boca Raton (FL), 2012.
  30. Underwood M.D., Kassir S.A., Bakalian M.J. et al. Serotonin receptors and suicide, major depression, alcohol use disorder and reported early life adversity. Transl. Psychiatry 2018; 8(1): 279. doi: 10.1038/s41398-018-0309-1.
  31. Popova N.K., Tsybko A.S., Naumenko V.S. The implication of 5-HT receptor family members in aggression, depression and suicide: similarity and difference. Int. J. Mol. Sci. 2022; 23(15): 8814. doi: 10.3390/ijms23158814.
  32. Ben-Efraim Y.J., Wasserman D., Wasserman J., Sokolowski M. Family-based study of HTR2A in suicide attempts: observed gene, gene × environment and parent-of-origin associations. Mol. Psychiatry. 2013; 18(7): 758–766. doi: 10.1038/mp.2012.86.
  33. Ghasemi A., Seifi M., Baybordi F. et al. Association between serotonin 2A receptor genetic variations, stressful life events and suicide. Gene 2018; 658: 191–197. doi: 10.1016/j.gene.2018.03.023.
  34. Brezo J., Bureau A., Mérette C. et al. Differences and similarities in the serotonergic diathesis for suicide attempts and mood disorders: a 22-year longitudinal gene-environment study. Mol. Psychiatry. 2010; 15: 831–843. doi: 10.1038/mp.2009.19.
  35. Shinozaki G., Romanowicz M., Mrazek D.A., Kung S. HTR2A gene-child abuse interaction and association with a history of suicide attempt among Caucasian depressed psychiatric inpatients. J. Affect. Disord. 2013; 150(3): 1200–1203. doi: 10.1016/j.jad.2013.05.028.
  36. Juruena M.F., Gadelrab R., Cleare A.J., Young A.H. Epigenetics: a missing link between early life stress and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021; 109: 110231. doi: 10.1016/j.pnpbp.2020.110231.
  37. Ibrahim P., Almeida D., Nagy C., Turecki G. Molecular impacts of childhood abuse on the human brain. Neurobiol. Stress. 2021; 15:100343. doi: 10.1016/j.ynstr.2021.100343.
  38. Gerritsen L., Milaneschi Y., Vinkers C.H. et al. HPA axis genes, and their interaction with childhood maltreatment, are related to cortisol levels and stress-related phenotypes. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2017; 42: 2446–2455. doi: 10.1038/npp.2017.118.
  39. Wichmann S., Kirschbaum C., Böhme C., Petrowski K. Cortisol stress response in post-traumatic stress disorder, panic disorder, and major depressive disorder patients. Psychoneuroendocrinology. 2017; 83: 135–141. doi: 10.1016/j.psyneuen.2017.06.005.
  40. Cahir M., Ardis T., Reynolds G.P., Cooper S.J. Acute and chronic tryptophan depletion differentially regulate central 5-HT1A and 5-HT2A receptor binding in the rat. Psychopharmacology (Berl). 2007; 190(4): 497–506. doi: 10.1007/s00213-006-0635-5.
  41. Jennings K.A., Sheward W.J., Harmar A.J., Sharp T. Evidence that genetic variation in 5-HT transporter expression is linked to changes in 5-HT2A receptor function. Neuropharmacology. 2008; 54(5): 776–783. doi: 10.1016/j.neuropharm.2007.12.001.
  42. Jørgensen L.M., Weikop P., Villadsen J. et al. Cerebral 5-HT release correlates with [11C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain. J. Cereb. blood flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2017; 37(2): 425–434. doi: 10.1177/0271678X16629483.
  43. Vadodaria K.C., Ji Y., Skime M. et al. Serotonin-induced hyperactivity in SSRI-resistant major depressive disorder patient-derived neurons. Mol. Psychiatry 2019; 24: 795–807. doi: 10.1038/s41380-019-0363-y.
  44. Schwasinger-Schmidt T.E., Macaluso M. Other antidepressants. Handb. Exp. Pharmacol. 2019; 250: 325–355. doi: 10.1007/164_2018_167.
  45. Slifirski G., Król M., Turіo J. 5-HT Receptors and the development of new antidepressants. Int. J. Mol. Sci. 2021; 22(16): 9015. doi: 10.3390/ijms22169015.
  46. Wright B.M., Eiland E.H. 3rd, Lorenz R. Augmentation with atypical antipsychotics for depression: a review of evidence-based support from the medical literature. Pharmacotherapy. 2013; 33: 344–359. doi: 10.1002/phar.1204.
  47. Guiard B.P., Di Giovanni G. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front. Pharmacol. 2015; 6: 46. doi: 10.3389/fphar.2015.00046.
  48. Borroto-Escuela D.O., Ambrogini P., Chruscicka B. et al. The role of central serotonin neurons and 5-HT heteroreceptor complexes in the pathophysiology of depression: a historical perspective and future prospects. Int. J. Mol. Sci. 2021; 22(4): 1927. doi: 10.3390/ijms22041927.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Издательство «Наука», 1970

##common.cookie##