Heat Capacity and Thermodynamic Properties of Mometasone Furoate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The temperature dependence of the heat capacity of mometasone furoate in the range from 6 to 500 K was determined by adiabatic vacuum calorimetry and differential scanning calorimetry for the first time. Standard thermodynamic functions of crystalline mometasone furoate were determined: heat capacity Cp°(T), enthalpy [H°(T) – H°(0)], enthalpy S°(T) Gibbs function [G°(T) – H°(0)] for the temperature range from T → 0 to 490 K. A regularity between the Debye temperature and the composition of steroid hormones was revealed.

Sobre autores

A. Knyazev

Lobachevsky National Research Nizhny Novgorod State University

Email: knyazevav@gmail.com
Nizhny Novgorod, Russia

N. Smirnova

Lobachevsky National Research Nizhny Novgorod State University

Nizhny Novgorod, Russia

O. Stepanova

Lobachevsky National Research Nizhny Novgorod State University

Nizhny Novgorod, Russia

S. Knyazeva

Lobachevsky National Research Nizhny Novgorod State University

Nizhny Novgorod, Russia

S. Sologubov

Lobachevsky National Research Nizhny Novgorod State University

Nizhny Novgorod, Russia

Yu. Sarmini

Lobachevsky National Research Nizhny Novgorod State University

Nizhny Novgorod, Russia

S. Chuprova

Lobachevsky National Research Nizhny Novgorod State University

Nizhny Novgorod, Russia

Bibliografia

  1. Glucocorticoid Hormone Action / Ed. by J.D. Baxter, G.G. Rousseau. Springer: Heidelberg, 1979. 640 p.
  2. Glucocorticoids: Effects, Action Mechanisms, and Therapeutic Uses / Ed. by A.C. Pelt. Nova Science Publishers, Inc.: Hauppauge, New York, 2011. 250 p.
  3. Moss G.P. // Pure Appl. Chem. 1989. V. 61. P. 1783.
  4. Buttgereit F., Straub R.H., Wehling M. et al. // Arthritis Rheumatol. 2004. V. 50. P. 3408.
  5. Kavanaugh A., Wells A.F. // Rheumatology (Oxford). 2014. V. 53. P. 1742.
  6. Hardy R.S., Raza K., Cooper M.S. // Nat. Rev. Rheumatol. 2020. V. 16. P. 133.
  7. Barnes P.J. // Clin. Sci. 1998. V. 94. P. 557.
  8. Coutinho A.E., Chapman K.E. // Mol. Cell. Endocrinol. 2011. V. 335. P. 2.
  9. Barnes P.J. // Br.J. Pharmacol. 2011. V. 163. P. 29.
  10. Timmermans S., Souffriau J., Libert C. // Front. Immunol. 2019. V. 10. P. 1545.
  11. Борисова Е.О. // Лечебное дело. 2007. № 3. С. 17.
  12. Knyazev A.V., Smirnova N.N., Shipilova A.S. et al. // J. Therm. Anal. Calorim. 2016. V. 123. P. 2201.
  13. Knyazev A.V., Emel’yanenko V.N., Smirnova N.N. et al. // J. Chem. Thermodyn. 2016. V. 103. P. 244.
  14. Knyazev A.V., Emel’yanenko V.N., Smirnova N.N. et al. // Ibid. 2017. V. 107. P. 37.
  15. Knyazev A.V., Somov N.V., Shipilova A.S. et al. // J. Mol. Struct. 2017. V. 1141. P. 164.
  16. Knyazev A.V., Somov N.V., Gusarova E.V. et al. // J. Chem. Cryst. 2023. V. 53. P. 152.
  17. Knyazev A.V., Smirnova N.N., Stepanova et al. // Russ. J. Phys. Chem. A. 2024. V. 98. № 9. P. 1895.
  18. Sarmini Yu.A., Sologubov S.S., Smirnova N.N. et al. // Ibid. 2024. V. 98. № 14. P. 3370.
  19. Chen X., Carillo M., Curtis Haltiwanger R. et al. // J. Pharm. Sci. 2005. V. 94. P. 2496.
  20. Varushchenko R.M., Druzhinina A.I., Sorkin E.L. // J. Chem. Thermodyn. 1997. V. 29. P. 623.
  21. Малышев В.М., Мильнер Г.А., Соркин Е.Л. и др. // Приб. техн. экспер. 1985. № 6. С. 195.
  22. Sabbah R., Xu-wu A., Chickos J.S. et al. // Thermochim. Acta. 1999. V. 331. P. 93.
  23. Уэндландт У. Термические методы анализа. М.: Мир, 1978. 527 с.
  24. Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential Scanning Calorimetry. Springer: Heidelberg, Germany, 2003. 310 p.
  25. Debye P. // Ann. Phys. 1912. V. 344. P. 789.
  26. CODATA Key Values for Thermodynamics. Cox, J.D.; Wagman, D.D.; Medvedev, V.A.: editors. Hemisphere: New York, 1989.
  27. Lebedev B.V. // Thermochim. Acta. 1997. V. 297. P. 143.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025