Synthesis and biological activity of bis-1,3,4-oxadiazoles (a review)
- Authors: Rak R.D.1, Gerasimova E.A.1, Egorov D.M.1
-
Affiliations:
- St. Petersburg State Institute of Technology (Technical University)
- Issue: Vol 95, No 9-10 (2025)
- Pages: 357-370
- Section: Articles
- URL: https://journals.eco-vector.com/0044-460X/article/view/696607
- DOI: https://doi.org/10.7868/S3034559625090019
- ID: 696607
Cite item
Abstract
The review presents achievements in the field of synthesis and study of biological activity of various bis-1,3,4-oxadiazoles from 1999 to 2024. The methods for obtaining bis-1,3,4-oxadiazoles repeat the methods used to obtain 1,3,4-oxadiazoles and are mainly implemented due to intramolecular cyclization under the action of phosphorus oxychloride or bases. Oxidative cyclization reactions play a major role. Single examples of the application of the Huisgen reaction and an electrochemical version of cyclization are presented. The main direction of the study of biological activity is antibacterial, and studies of antifungal and anticancer activity are also presented.
Keywords
About the authors
R. D. Rak
St. Petersburg State Institute of Technology (Technical University)St. Petersburg, 190013 Russia
E. A. Gerasimova
St. Petersburg State Institute of Technology (Technical University)St. Petersburg, 190013 Russia
D. M. Egorov
St. Petersburg State Institute of Technology (Technical University)
Email: diavoly@mail.ru
St. Petersburg, 190013 Russia
References
- Hamoud M.M.S., Osman N.A., Rezq S., Abd El-wahab H.A.A., Hassan A.E.A., Abdel-Fattah H.A., Romero D.G., Ghanim A.M. // Bioorg. Chem. 2022. Vol. 124. P. 105808. doi: 10.1016/j.bioorg.2022.105808
- Chaudhary T., Upadhyay P.K., Kataria R. // Curr. Org. Chem. 2024. Vol. 21. N 8. P. 1014. doi: 10.2174/0115701794265887231014061317
- Veeramani V., Ganesh P.P.S.K., Bharanidharan S., Muthuraja P., Govindasamy C., Rajamohan R. // J. Mol. Sci. 2024. Vol. 1318. P. 139263. doi: 10.1016/j.molstruc.2024.139263
- Glomb T., Świątek P. // Int. J. Mol. Sci. 2021. Vol. 22. N 13. P. 6979. doi: 10.3390/ijms22136979
- Pham E.C., Truong T.N., Dong N.H., Vo D.D., Hong Do T.T. // Med. Chem. 2022. Vol. 18. N 5. P. 558. doi: 10.2174/1573406417666210803170637
- Peng F., Liu T., Wang Q., Liu F., Cao X., Yang J., Liu L., Xie C., Xue W. // J. Agric. Food Chem. 2021. Vol. 69. N 37. P. 11085. doi: 10.1021/acs.jafc.1c03755
- Kapila I., Bharwal A., Sharma P., Choudhary N., Abbot V. // Eur. J. Med. Chem. Rep. 2024. Vol. 11. P. 100150. doi: 10.1016/j.ejmcr.2024.100150
- Sravanthi B., Himavathi G., Robert A.R., Karunakar P., Kiran K.S., Maddila S. // J. Biomol. Str. Dyn. 2024. Vol. 42. N 10. P. 5376. doi: 10.1080/07391102.2023.2226743
- Zampieri D., Fortuna S., Romano M., De Logu A., Cabiddu G., Sanna A., Mamolo M.G. // Int. J. Mol. Sci. 2022. Vol. 23. N 23. P. 15295. doi: 10.3390/ijms232315295
- Kumar D., Kumar H., Deep A., Marwaha R.K. // Trad. Med. Res. 2023. Vol. 8. N 1. P. 5. doi: 10.53388/TMR20220614001
- Tiwari D., Narang R., Sudhakar K., Singh V., Lal S., Devgun M. // Chem. Biol. Drug Des. 2022. Vol. 100. N 6. P. 1086. doi: 10.1111/cbdd.14100
- Paun A., Hadade N.D., Paraschivescu C.C., Matache M. // J. Mater. Chem. (C). 2016. Vol. 4. N 37. P. 8596. doi: 10.1039/C6TC03003C
- Li Z., Li W., Keum C., Archer E., Zhao B., Slawin A.M.Z., Huang W., Gather M.C., Samuel I.D.W., Zysman-Colman E. // J. Phys. Chem. (C). Vol. 123. N 40. P. 24785. doi: 10.1021/acs.jpcc.9b08479
- Wu Q., Braveenth R., Zhang H.Q., Bae I.-J., Kim M., Chai K.Y. // Molecules. 2018. Vol. 23. N 4. P. 843. doi: 10.3390/molecules23040843
- Carli S., Baena J.P.C., Marianetti G., Marchetti N., Lessi M., Abate A., Caramori S., Grätzel M., Bellina F., Bignozzi C.A., Hagfeldt A. // ChemSusChem. 2016. Vol. 9. N 7. P. 657. doi: 10.1002/cssc.201501665
- Xu X., Li Z., Bi Z., Yu T., Ma W., Feng K., Li Y., Peng Q. // Adv. Mater. 2018. Vol. 30. N 28. P. 1800737. doi: 10.1002/adma.201800737
- Coetzee L.-C.C., Adeyinka A.S., Magwa N. // Energies. 2022. Vol. 15. N 13. P. 4913. doi: 10.3390/en15134913
- Mehmood U., Hussein I.A., Daud M. // Int. J. Photoenergy. 2015. Vol. 2015. P. 1. doi: 10.1155/2015/637652
- Raviprabha K., Bhat R.S. // Egypt. J. Petr. 2023. Vol. 32. N 2. P. 1. doi: 10.1016/j.ejpe.2023.03.002
- Kumar S., Kalia V., Goyal M., Jhaa G., Kumar S., Vashisht H., Dahiya H., Quraishi M.A., Verma C. // J. Mol. Liq. 2022. Vol. 357. P. 119077. doi: 10.1016/j.molliq.2022.119077
- Sharma D., Thakur A., Sharma M.K., Sharma R., Kumar S., Sihmar A., Dahiya H., Jhaa G., Kumar A., Sharma A.K., Om H. // Environ. Res. 2023. Vol. 234. P. 116555. doi: 10.1016/j.envres.2023.116555
- Patel K.D., Prajapati S.M., Panchal S.N., Patel H.D. // Synth. Commun. 2014. Vol. 44. N 13. P. 1859. doi: 10.1080/00397911.2013.879901
- Gorbunov Y.K., Fershtat L.L. // Adv. Heterocycl. Chem. 2024. Vol. 143. P. 1. doi: 10.1016/bs.aihch.2023.11.001
- Chaudhary T., Upadhyay P.K. // Curr. Org. Synth. 2023. Vol. 20. N 6. P. 663. doi: 10.2174/1570179420666221129153933
- Kudelko A. // Tetrahedron. 2011. Vol. 67. N 44. P. 8502. doi: 10.1016/j.tet.2011.09.018
- Paraschivescu C.C., Matache M., Dobrota C., Nicolescu A., Maxim C., Deleanu C., Farcas̆anu I.C., Hadade N.D. // J. Org. Chem. 2013. Vol. 78. N 6. P. 2670. doi: 10.1021/jo400023z
- Detert H., Schollmeier D. // Synthesis. 1999. Vol. 1999. N 6. P. 999. doi: 10.1055/s-1999-3511
- Shaker R.M., Mahmoud A.F., Abdel-Latif F.F. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2005. Vol. 180. N 2. P. 397. doi: 10.1080/104265090509199
- Padmavathi V., Reddy D.G., Reddy N.S., Mahesh K. // Eur. J. Med. Chem. 2011. Vol. 46. N 4. P. 1367. doi: 10.1016/j.ejmech.2011.01.063
- Rohand T., Ramli Y., Baruah M., Budka J., Das A.M. // Pharm. Chem. J. 2019. Vol. 53. N 2. P. 150. doi: 10.1007/s11094-019-01969-2
- Shridhar A.H., Keshavayya J., Peethambar S.K., Hoskeri J.H. // Arab. J. Chem. 2016. Vol. 9. P. 1643. doi: 10.1016/j.arabjc.2012.04.018
- Reddy S.C., Devi V.M., Kumar R.G., Sunitha M., Nagaraj A. // J. Heterocycl. Chem. 2013. Vol. 50. N 3. P. 557. doi: 10.1002/jhet.1528
- Mekky A.E.M., Sanad S.M.H., Abdelfattah A.M. // Mendeleev Commun. 2022. Vol. 32. N 5. P. 612. doi: 10.1016/j.mencom.2022.09.014
- Hamdana I.A.A., Tomma J.H. // Russ. J. Org. Chem. 2024. Vol. 60. N 1. P. 164. doi: 10.1134/S1070428024010214
- Sharma L.K., Saraswat A., Singh S., Srivastav M.K., Singh R.K.P. // Proc. Natl. Acad. Sci. India Sect. (A). 2014. Vol. 85. N 1. P. 29. doi: 10.1007/s40010-014-0175-z
- Dubey A.K., Sangwan N.K. // Proc. Natl. Acad. Sci. India Sect. (A). 2000. Vol. 70. N 4. P. 361.
- Purohit M., Prasad V.V.S.R., Mayur C.Y. // Archiv Der Pharmazie. 2011. Vol. 344. N 4. P. 248. doi: 10.1002/ardp.201000177
- Musad E.A., Mohamed R., Saeed B.A., Vishwanath B.S., Rai K.L.M. // Bioorg. Med. Chem. Lett. 2021. Vol. 21. N 12. P. 3536. doi: 10.1016/j.bmcl.2011.04.142
- Dilanyana S.V., Buniatyana Zh.M., Panosyan H.A. // Russ. J. Org. Chem. 2024. Vol. 60. N 7. P. 1301. doi: 10.1134/S1070428024070224
- Tomi I.H.R., Al-Qaisi A.H.J., Al-Qaisi Z.H.J. // J. King Saud Univ. Sci. 2011. Vol. 23. N 1. P. 23. doi: 10.1016/j.jksus.2010.06.002
Supplementary files



