Synthesis and biological activity of bis-1,3,4-oxadiazoles (a review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents achievements in the field of synthesis and study of biological activity of various bis-1,3,4-oxadiazoles from 1999 to 2024. The methods for obtaining bis-1,3,4-oxadiazoles repeat the methods used to obtain 1,3,4-oxadiazoles and are mainly implemented due to intramolecular cyclization under the action of phosphorus oxychloride or bases. Oxidative cyclization reactions play a major role. Single examples of the application of the Huisgen reaction and an electrochemical version of cyclization are presented. The main direction of the study of biological activity is antibacterial, and studies of antifungal and anticancer activity are also presented.

About the authors

R. D. Rak

St. Petersburg State Institute of Technology (Technical University)

St. Petersburg, 190013 Russia

E. A. Gerasimova

St. Petersburg State Institute of Technology (Technical University)

St. Petersburg, 190013 Russia

D. M. Egorov

St. Petersburg State Institute of Technology (Technical University)

Email: diavoly@mail.ru
St. Petersburg, 190013 Russia

References

  1. Hamoud M.M.S., Osman N.A., Rezq S., Abd El-wahab H.A.A., Hassan A.E.A., Abdel-Fattah H.A., Romero D.G., Ghanim A.M. // Bioorg. Chem. 2022. Vol. 124. P. 105808. doi: 10.1016/j.bioorg.2022.105808
  2. Chaudhary T., Upadhyay P.K., Kataria R. // Curr. Org. Chem. 2024. Vol. 21. N 8. P. 1014. doi: 10.2174/0115701794265887231014061317
  3. Veeramani V., Ganesh P.P.S.K., Bharanidharan S., Muthuraja P., Govindasamy C., Rajamohan R. // J. Mol. Sci. 2024. Vol. 1318. P. 139263. doi: 10.1016/j.molstruc.2024.139263
  4. Glomb T., Świątek P. // Int. J. Mol. Sci. 2021. Vol. 22. N 13. P. 6979. doi: 10.3390/ijms22136979
  5. Pham E.C., Truong T.N., Dong N.H., Vo D.D., Hong Do T.T. // Med. Chem. 2022. Vol. 18. N 5. P. 558. doi: 10.2174/1573406417666210803170637
  6. Peng F., Liu T., Wang Q., Liu F., Cao X., Yang J., Liu L., Xie C., Xue W. // J. Agric. Food Chem. 2021. Vol. 69. N 37. P. 11085. doi: 10.1021/acs.jafc.1c03755
  7. Kapila I., Bharwal A., Sharma P., Choudhary N., Abbot V. // Eur. J. Med. Chem. Rep. 2024. Vol. 11. P. 100150. doi: 10.1016/j.ejmcr.2024.100150
  8. Sravanthi B., Himavathi G., Robert A.R., Karunakar P., Kiran K.S., Maddila S. // J. Biomol. Str. Dyn. 2024. Vol. 42. N 10. P. 5376. doi: 10.1080/07391102.2023.2226743
  9. Zampieri D., Fortuna S., Romano M., De Logu A., Cabiddu G., Sanna A., Mamolo M.G. // Int. J. Mol. Sci. 2022. Vol. 23. N 23. P. 15295. doi: 10.3390/ijms232315295
  10. Kumar D., Kumar H., Deep A., Marwaha R.K. // Trad. Med. Res. 2023. Vol. 8. N 1. P. 5. doi: 10.53388/TMR20220614001
  11. Tiwari D., Narang R., Sudhakar K., Singh V., Lal S., Devgun M. // Chem. Biol. Drug Des. 2022. Vol. 100. N 6. P. 1086. doi: 10.1111/cbdd.14100
  12. Paun A., Hadade N.D., Paraschivescu C.C., Matache M. // J. Mater. Chem. (C). 2016. Vol. 4. N 37. P. 8596. doi: 10.1039/C6TC03003C
  13. Li Z., Li W., Keum C., Archer E., Zhao B., Slawin A.M.Z., Huang W., Gather M.C., Samuel I.D.W., Zysman-Colman E. // J. Phys. Chem. (C). Vol. 123. N 40. P. 24785. doi: 10.1021/acs.jpcc.9b08479
  14. Wu Q., Braveenth R., Zhang H.Q., Bae I.-J., Kim M., Chai K.Y. // Molecules. 2018. Vol. 23. N 4. P. 843. doi: 10.3390/molecules23040843
  15. Carli S., Baena J.P.C., Marianetti G., Marchetti N., Lessi M., Abate A., Caramori S., Grätzel M., Bellina F., Bignozzi C.A., Hagfeldt A. // ChemSusChem. 2016. Vol. 9. N 7. P. 657. doi: 10.1002/cssc.201501665
  16. Xu X., Li Z., Bi Z., Yu T., Ma W., Feng K., Li Y., Peng Q. // Adv. Mater. 2018. Vol. 30. N 28. P. 1800737. doi: 10.1002/adma.201800737
  17. Coetzee L.-C.C., Adeyinka A.S., Magwa N. // Energies. 2022. Vol. 15. N 13. P. 4913. doi: 10.3390/en15134913
  18. Mehmood U., Hussein I.A., Daud M. // Int. J. Photoenergy. 2015. Vol. 2015. P. 1. doi: 10.1155/2015/637652
  19. Raviprabha K., Bhat R.S. // Egypt. J. Petr. 2023. Vol. 32. N 2. P. 1. doi: 10.1016/j.ejpe.2023.03.002
  20. Kumar S., Kalia V., Goyal M., Jhaa G., Kumar S., Vashisht H., Dahiya H., Quraishi M.A., Verma C. // J. Mol. Liq. 2022. Vol. 357. P. 119077. doi: 10.1016/j.molliq.2022.119077
  21. Sharma D., Thakur A., Sharma M.K., Sharma R., Kumar S., Sihmar A., Dahiya H., Jhaa G., Kumar A., Sharma A.K., Om H. // Environ. Res. 2023. Vol. 234. P. 116555. doi: 10.1016/j.envres.2023.116555
  22. Patel K.D., Prajapati S.M., Panchal S.N., Patel H.D. // Synth. Commun. 2014. Vol. 44. N 13. P. 1859. doi: 10.1080/00397911.2013.879901
  23. Gorbunov Y.K., Fershtat L.L. // Adv. Heterocycl. Chem. 2024. Vol. 143. P. 1. doi: 10.1016/bs.aihch.2023.11.001
  24. Chaudhary T., Upadhyay P.K. // Curr. Org. Synth. 2023. Vol. 20. N 6. P. 663. doi: 10.2174/1570179420666221129153933
  25. Kudelko A. // Tetrahedron. 2011. Vol. 67. N 44. P. 8502. doi: 10.1016/j.tet.2011.09.018
  26. Paraschivescu C.C., Matache M., Dobrota C., Nicolescu A., Maxim C., Deleanu C., Farcas̆anu I.C., Hadade N.D. // J. Org. Chem. 2013. Vol. 78. N 6. P. 2670. doi: 10.1021/jo400023z
  27. Detert H., Schollmeier D. // Synthesis. 1999. Vol. 1999. N 6. P. 999. doi: 10.1055/s-1999-3511
  28. Shaker R.M., Mahmoud A.F., Abdel-Latif F.F. // Phosphorus, Sulfur, Silicon, Relat. Elem. 2005. Vol. 180. N 2. P. 397. doi: 10.1080/104265090509199
  29. Padmavathi V., Reddy D.G., Reddy N.S., Mahesh K. // Eur. J. Med. Chem. 2011. Vol. 46. N 4. P. 1367. doi: 10.1016/j.ejmech.2011.01.063
  30. Rohand T., Ramli Y., Baruah M., Budka J., Das A.M. // Pharm. Chem. J. 2019. Vol. 53. N 2. P. 150. doi: 10.1007/s11094-019-01969-2
  31. Shridhar A.H., Keshavayya J., Peethambar S.K., Hoskeri J.H. // Arab. J. Chem. 2016. Vol. 9. P. 1643. doi: 10.1016/j.arabjc.2012.04.018
  32. Reddy S.C., Devi V.M., Kumar R.G., Sunitha M., Nagaraj A. // J. Heterocycl. Chem. 2013. Vol. 50. N 3. P. 557. doi: 10.1002/jhet.1528
  33. Mekky A.E.M., Sanad S.M.H., Abdelfattah A.M. // Mendeleev Commun. 2022. Vol. 32. N 5. P. 612. doi: 10.1016/j.mencom.2022.09.014
  34. Hamdana I.A.A., Tomma J.H. // Russ. J. Org. Chem. 2024. Vol. 60. N 1. P. 164. doi: 10.1134/S1070428024010214
  35. Sharma L.K., Saraswat A., Singh S., Srivastav M.K., Singh R.K.P. // Proc. Natl. Acad. Sci. India Sect. (A). 2014. Vol. 85. N 1. P. 29. doi: 10.1007/s40010-014-0175-z
  36. Dubey A.K., Sangwan N.K. // Proc. Natl. Acad. Sci. India Sect. (A). 2000. Vol. 70. N 4. P. 361.
  37. Purohit M., Prasad V.V.S.R., Mayur C.Y. // Archiv Der Pharmazie. 2011. Vol. 344. N 4. P. 248. doi: 10.1002/ardp.201000177
  38. Musad E.A., Mohamed R., Saeed B.A., Vishwanath B.S., Rai K.L.M. // Bioorg. Med. Chem. Lett. 2021. Vol. 21. N 12. P. 3536. doi: 10.1016/j.bmcl.2011.04.142
  39. Dilanyana S.V., Buniatyana Zh.M., Panosyan H.A. // Russ. J. Org. Chem. 2024. Vol. 60. N 7. P. 1301. doi: 10.1134/S1070428024070224
  40. Tomi I.H.R., Al-Qaisi A.H.J., Al-Qaisi Z.H.J. // J. King Saud Univ. Sci. 2011. Vol. 23. N 1. P. 23. doi: 10.1016/j.jksus.2010.06.002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences