Coordination Compounds of Cobalt(II) Nitrate and Perchlorate with Acetamide and Carbamide: Precursors for the Synthesis of Catalytically Active Tricobalt Tetraoxide
- Authors: Rodriguez Pineda R.A.1, Karavaev I.A.1, Savinkina E.V.1, Volchkova E.V.1, Pastukhova Z.Y.1, Bruk L.G.1, Buzanov G.A.2, Kubasov A.S.2, Retivov V.M.3
-
Affiliations:
- MIREA Russian Technological University
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Kurchatov Institute
- Issue: Vol 50, No 5 (2024)
- Pages: 310-321
- Section: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667598
- DOI: https://doi.org/10.31857/S0132344X24050039
- EDN: https://elibrary.ru/NKIPJK
- ID: 667598
Cite item
Abstract
The reactions of cobalt(II) nitrate or perchloride with acetamide (AA) or carbamide (Ur) in an aqueous medium produce coordination compounds [Co(Ur)4](NO3)2 (I), [Co(Ur)6](NO3)2 (II), [Co(AA)4(H2O)2](NO3)2 (III), [Co(AA)4(H2O)2](NO3)2 ∙ 2AA (IV), [Co(Ur)6](ClO4)2, (V), [Co(AA)4(H2O)2](ClO4)2 (VI), and [Co(AA)6](ClO4)2 (VII). The compositions of the isolated complexes are determined by physicochemical methods, and the crystal and molecular structures of compounds II, V, VI, and VII are solved. Specific features of the thermal behavior of all synthesized compounds in a wide temperature range are studied in detail. These compounds are shown to be used as precursors in the preparation of nanosized Co3O4 using self-propagating high-temperature synthesis. The catalytic activity of thus synthesized Co3O4 in the model epoxidation of allyl alcohol is studied.
Full Text

About the authors
R. A. Rodriguez Pineda
MIREA Russian Technological University
Author for correspondence.
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
I. A. Karavaev
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
E. V. Savinkina
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
E. V. Volchkova
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
Zh. Yu. Pastukhova
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
L. G. Bruk
MIREA Russian Technological University
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
G. A. Buzanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
A. S. Kubasov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
V. M. Retivov
Kurchatov Institute
Email: rodrigues.pineda@yandex.ru
Russian Federation, Moscow
References
- Vereshchagin, A.L. Preparativnyi samorasprostranyayushchiisya vysokotemperaturnyi sintez oksidov (Preparative Self-Propagating High-Temperature Synthesis of Oxides), Biisk, 2013.
- Merzhanov, A.G., Izv. Vysshikh. Uchebn. Zaved., 2006, no. 5, p. 5.
- Din, A., Akhtar, K., Karimov, Kh.S., et al., J. Mol. Liq., 2017, vol. 237, p. 266.
- Deng, J., Kang, L., Bai, G., et al., Electrochim. Acta, 2014, vol. 132, p. 127.
- Petrichko, M.I., Karavaev, I.A., Savinkina, E.V., et al., Russ. J. Inorg. Chem., 2023, vol. 68, no. 4, p. 415. https://doi.org/10.1134/S0036023623600193
- Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., et al., Ceram. Int., 2013, vol. 39, no. 2, p. 1379.
- Savinkina, E.V., Karavaev, I.A., Grigoriev, M.S., et al., Inorg. Chim. Acta, 2022, vol. 532, p. 120759.
- Podbolotov, K.B., Volochko, A.T., and Khort, A.A., Perspektivnye materialy i tekhnologii (Prospective Materials and Technologies), Klubovich, V.V., Ed., Vitebsk: UO VGTU, 2017, vol. 2, p. 171.
- Wen, W., Wu, J.-M., and Tu, J.-P., J. Alloys Comp., 2012, vol. 513, p. 592.
- Jung, J.C.Y., Sui, P.C., and Zhang, J., J. Energy Storage, 2021, vol. 35, p. 102217.
- Hu, X., Wei, L., Chen, R., et al., ChemSelect, 2020, vol. 5, no. 17, p. 5268.
- Vojisavljevic, K., Wicker, S., Can, I., et al., Adv. Powder Technol., 2017, vol. 28, no. 4, p. 1118.
- Ma, J., Wei, H., Liu, Y., et al., Int. J. Hydrogen Energy, 2020, vol. 45, p. 21205.
- Toniolo, J.C., Takimi, A.S., and Bergmann, C.P., Mater. Res. Bull., 2010, vol. 45, no. 6, p. 672.
- Groven, L.J., Pfeil, T.L., and Pourpoint, T.L., Int. J. Hydrogen Energy, 2013, vol. 38, no. 15, p. 6377.
- Luo, J. and Yathirajan, H.S., Ind. J. Mater. Sci., 2013, vol. 2014, p. 787306.
- Rau, T.F. and Kurkutova, E.N., Dokl. Akad. Nauk SSSR, 1971, vol. 204, no. 2, p. 342.
- Krawchuk, A. and Stadnicka, K., Acta Crystallogr., Sect. C: Cryst. Chem. Commun., 2007, vol. 63, p. 448.
- Rau, T.F. and Kurkutova, E.N., Dokl. Akad. Nauk SSSR, 1972, vol. 204, no. 3, p. 600.
- Gentile, P.S., White, J., and Haddad, S., Inorg. Chim. Acta, 1974, vol. 8, p. 97.
- Gentile, P.S., Carfagno, P., Haddad, S., et al., Inorg. Chim. Acta, 1972, vol. 6, p. 296.
- McGillicuddy, R.D., Thapa, S., Wenny, M.B., et al., J. Am. Chem. Soc., 2020, vol. 142, no. 45, p. 19170.
- SAINT, Madison: Bruker AXS Inc., 2018.
- Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, no. 1, p. 3.
- Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, p. 339.
- Nakamoto, K., Infrared Spectra and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.
- Rosenthal, M.R., J. Chem. Educ., 1973, vol. 50, no. 5, p. 331.
- Nikishina, E.E., Tonkie Khim. Tekhnol., 2021, vol. 16, no. 6, p. 502.
- Shokri, A. and Fard, M.S., Environmental Challenges, 2022, vol. 7, p. 100534.
- Pastukhova, Zh.Yu., Levitin, V.V., Katsman, E.A., and Bruk, L.G., Kinet. Katal., 2021, vol. 62, no. 5, p. 551.
Supplementary files
