Acyclic Diaminocarbene Platinum(IV) Complexes Synthesized by the Oxidative Addition of MeI and I2
- Authors: Karchevsky A.A.1, Kinzhalov M.A.1, Katkova S.A.1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 50, No 5 (2024)
- Pages: 322-333
- Section: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667599
- DOI: https://doi.org/10.31857/S0132344X24050047
- EDN: https://elibrary.ru/NKHBWN
- ID: 667599
Cite item
Abstract
The oxidative addition of methyl iodide or molecular iodine to the bis(С,N-chelate) deprotonated diaminocarbene platinum(II) complexes [Pt{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2] (Ar = C6H3-2,6-Me2 (Xyl), C6H2-2,4,6-Me3 (Mes), and C6H4-4-Me (pTol)) affords the corresponding platinum(IV) derivatives in a yield of 89–99%. The addition of CF3CO2H is accompanied by the protonation of the nitrogen atoms of the diaminocarbene fragment to form the cationic complexes [[PtI(X)-{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2]CF3CO2H (X = Me, I). The structures of the compounds are determined by elemental analysis; high resolution mass spectrometry with electrospray ionization (ESI HRMS); IR spectroscopy; 1H, 13C{1H}, 19F{1H}, and 195Pt{1H} NMR spectroscopy; 2D NMR spectroscopy (1H,1Н COSY, 1H,1Н NOESY, 1H,13C HSQC, 1H,13C HMBC, 1H,15N HSQC, 1H,15N HMBC), and X-ray diffraction
(XRD) and thermogravimetric analyses. The synthesized platinum(IV) complexes are thermally stable to 200–260°C and are electroneutral molecules with the octahedral coordination sphere formed by two deprotonated diaminocarbene C,N-chelate substituents and iodine and methyl or two iodine atoms localized in the apical positions.
Full Text

About the authors
A. A. Karchevsky
Saint Petersburg State University
Email: s.katkova@spbu.ru
Russian Federation, Saint Petersburg
M. A. Kinzhalov
Saint Petersburg State University
Email: s.katkova@spbu.ru
Russian Federation, Saint Petersburg
S. A. Katkova
Saint Petersburg State University
Author for correspondence.
Email: s.katkova@spbu.ru
Russian Federation, Saint Petersburg
References
- Labinger, J.A., Organometallics, 2015, vol. 34, no. 20, p. 4784.
- Crespo, M., Martinez, M., Nabavizadeh, S.M., et al., Coord. Chem. Rev., 2014, vol. 279, p. 115.
- Rendina, L.M. and Puddephatt, R.J., Chem. Rev., 1997, vol. 97, no. 6, p. 1735.
- Shahsavari, H.R., Babadi Aghakhanpour, R., Babaghasabha. M., et al., Eur. J. Inorg. Chem., 2017, vol. 2017, no. 20, p. 2682.
- Shahsavari, H.R., Babadi Aghakhanpour, R., Fereidoonnezhad, M., et al., New J. Chem., 2018, vol. 42, no. 4, p. 2564.
- Hamidizadeh, P., Nabavizadeh, S.M., and Hoseini, S.J., Dalton Trans., 2019, vol. 48, no. 10, p. 3422.
- Chamyani, S., Shahsavari, H.R., Abedanzadeh, S., et al., Appl. Organomet. Chem., 2019, vol. 33, no. 1, p. 4674.
- Habibzadeh, S., Rashidi, M., Nabavizadeh, S.M., et al., Organometallics, 2010, vol. 29, no. 1, p. 82.
- Shahsavari, H.R., Aghakhanpour, R.B., Hossein-Abadi, M., et al., Appl. Organomet. Chem., 2018, vol. 32, no. 4, p. 4216.
- Aghakhanpour, R.B., Nabavizadeh, S.M., Mohammadi, L., et al., J. Organomet. Chem., 2015, vol. 781, p. 47.
- Nahaei, A., Rasekh, A., Rashidi, M., et al., J. Organomet. Chem., 2016, vols. 815–816, p. 35.
- Hoseini, S.J., Mohamadikish, M., Kamali, K., et al., Dalton Trans., 2007, vol. 17, p. 1697.
- Tsoureas, N. and Danopoulos, A.A., J. Organomet. Chem., 2015, vol. 775, p. 178.
- Bennett, M.A., Bhargava, S.K., Ke, M., et al., Dalton Trans., 2000, vol. 20, p. 3537.
- Kinzhalov, M. and Luzyanin, K., Russ. J. Inorg. Chem., 2022, vol. 67, p. 48.
- Serra, D., Cao, P., Cabrera, J., et al., Organometallics, 2011, vol. 30, no. 7, p. 1885.
- Mastrocinque, F., Anderson, C.M., Elkafas, A.M., et al., J. Organomet. Chem., 2019, vol. 880, p. 98.
- Prokopchuk, E.M. and Puddephatt, R.J., Organometallics, 2003, vol. 22, no. 3, p. 563.
- Katkova, S.A., Kinzhalov, M.A., Tolstoy, P.M., et al., Organometallics, 2017, vol. 36, no. 21, p. 4145.
- Kashina, M.V., Karcheuski, A.A., Kinzhalov, M.A., et al., Molecules, 2023, vol. 28, no. 23, p. 7764. https://doi.org/10.3390/molecules28237764
- Hubschle, C.B., Sheldrick, G.M., and Dittrich, B., J. Appl. Crystallogr., 2011, vol. 44, no. 6, p. 1281.
- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.
- Oxford Diffraction, CrysAlis PRO, Yarnton: Oxford Diffraction Ltd, 2009.
- Kashina, M.V., Luzyanin, K.V., Katlenok, E.A., et al., Dalton Trans., 2022, vol. 51, no. 17, p. 6718.
- Stuart, B.H., Infrared Spectroscopy: Fundamentals and Applications, New York: Wiley, 2004.
- Fujisawa, K., Kobayashi, Y., Okano, M., et al., Molecules, 2023, vol. 28, no. 7, p. 2936.
- Akhmadullina, N.S., Borissova, A.O., Garbuzova, I.A., et al., Z. Anorg. Allg. Chem., 2013, vol. 639, no. 2, p. 392.
- Ghedini, M., Pucci, D., Crispini, A., et al., Organometallics, 1999, vol. 18, no. 11, p. 2116.
- Exposito, J.E., Aullon, G., Bardaji, M., et al., Dalton Trans., 2020, vol. 49, no. 38, p. 13326.
- Fatemeh, N.H., Farasat, Z., Nabavizadeh, S.M., et al., J. Organomet. Chem., 2019, vol. 880, p. 232.
- Jamali, S., Czerwieniec, R., Kia, R., et al., Dalton Trans., 2011, vol. 40, no. 36, p. 9123.
- Exposito, J.E., Alvarez-Paino, M., Aullon, G., et al., Dalton Trans., 2015, vol. 44, no. 36, p. 16164.
- Shafaatian, B. and Heidari, B., J. Organomet. Chem., 2015, vol. 780, p. 34.
- Frauhiger, B.E., White, P.S., and Templeton, J.L., Organometallics, 2012, vol. 31, no. 1, p. 225.
- Altus, K.M., Bowes, E.G., Beattie, D.D., et al., Organometallics, 2019, vol. 38, no. 10, p. 2273.
- Katkova, S.A., Kozina, D.O., Kisel, K.S., et al., Dalton Trans., 2023, vol. 52, no. 14, p. 4595.
- Owen, J.S., Labinger, J.A., and Bercaw, J.E., J. Am. Chem. Soc., 2004, vol. 126, no. 26, p. 8247.
- Hardman, N.J., Abrams, M.B., Pribisko, M.A., et al., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, no. 15, p. 1955.
- Meyer, D., Ahrens, S., and Strassner, T., Organometallics, 2010, vol. 29, no. 15, p. 3392.
- Kelly, M.E., Dietrich, A., Gomez-Ruiz, S., et al., Organometallics, 2008, vol. 27, no. 19, p. 4917.
- Maidich, L., Zucca, A., Clarkson, G.J., et al., Organometallics, 2013, vol. 32, no. 11, p. 3371.
- Shaw, P.A. and Rourke, J.P., Dalton Trans., 2017, vol. 46, no. 14, p. 4768.
- Zhang, F., Broczkowski, M.E., Jennings, M.C., et al., Can. J. Chem., 2005, vol. 83, nos. 6–7, p. 595.
- Shaw, P.A., Phillips, J.M., Clarkson, G.J., et al., Dalton Trans., 2016, vol. 45, no. 28, p. 11397.
- Yahav, A., Goldberg, I., and Vigalok, A., Organometallics, 2005, vol. 24, no. 23, p. 5654.
- Westra, A.N., Bourne, S.A., and Koch, K.R., Dalton Trans., 2005, no. 17, p. 2916.
- Westra, A.N., Bourne, S.A., Esterhuysen, C., et al., Dalton Trans., 2005, no. 12, p. 2162.
- Goldberg, K.I., Yan, J., and Breitung, E.M., J Am. Chem. Soc., 1995, vol. 117, no. 26, p. 6889.
- Baar, C.R., Jenkins, H.A., Vittal, J.J., et al., Organometallics, 1998, vol. 17, no. 13, p. 2805.
- Fischer, E.O. and Maasbol, A., Chem. Ber., 1967, vol. 100, no. 7, p. 2445.
- Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.
- Desiraju, G.R., Ho, P.S., Kloo, L., et al., Pure Appl. Chem., 2013, vol. 85, no. 8, p. 1711
Supplementary files
