Acyclic Diaminocarbene Platinum(IV) Complexes Synthesized by the Oxidative Addition of MeI and I2

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The oxidative addition of methyl iodide or molecular iodine to the bis(С,N-chelate) deprotonated diaminocarbene platinum(II) complexes [Pt{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2] (Ar = C6H3-2,6-Me2 (Xyl), C6H2-2,4,6-Me3 (Mes), and C6H4-4-Me (pTol)) affords the corresponding platinum(IV) derivatives in a yield of 89–99%. The addition of CF3CO2H is accompanied by the protonation of the nitrogen atoms of the diaminocarbene fragment to form the cationic complexes [[PtI(X)-{C(N(H)Ar)(NC(N(H)Ph)N(Ph)}2]CF3CO2H (X = Me, I). The structures of the compounds are determined by elemental analysis; high resolution mass spectrometry with electrospray ionization (ESI HRMS); IR spectroscopy; 1H, 13C{1H}, 19F{1H}, and 195Pt{1H} NMR spectroscopy; 2D NMR spectroscopy (1H,1Н COSY, 1H,1Н NOESY, 1H,13C HSQC, 1H,13C HMBC, 1H,15N HSQC, 1H,15N HMBC), and X-ray diffraction

(XRD) and thermogravimetric analyses. The synthesized platinum(IV) complexes are thermally stable to 200–260°C and are electroneutral molecules with the octahedral coordination sphere formed by two deprotonated diaminocarbene C,N-chelate substituents and iodine and methyl or two iodine atoms localized in the apical positions.

Full Text

Restricted Access

About the authors

A. A. Karchevsky

Saint Petersburg State University

Email: s.katkova@spbu.ru
Russian Federation, Saint Petersburg

M. A. Kinzhalov

Saint Petersburg State University

Email: s.katkova@spbu.ru
Russian Federation, Saint Petersburg

S. A. Katkova

Saint Petersburg State University

Author for correspondence.
Email: s.katkova@spbu.ru
Russian Federation, Saint Petersburg

References

  1. Labinger, J.A., Organometallics, 2015, vol. 34, no. 20, p. 4784.
  2. Crespo, M., Martinez, M., Nabavizadeh, S.M., et al., Coord. Chem. Rev., 2014, vol. 279, p. 115.
  3. Rendina, L.M. and Puddephatt, R.J., Chem. Rev., 1997, vol. 97, no. 6, p. 1735.
  4. Shahsavari, H.R., Babadi Aghakhanpour, R., Babaghasabha. M., et al., Eur. J. Inorg. Chem., 2017, vol. 2017, no. 20, p. 2682.
  5. Shahsavari, H.R., Babadi Aghakhanpour, R., Fereidoonnezhad, M., et al., New J. Chem., 2018, vol. 42, no. 4, p. 2564.
  6. Hamidizadeh, P., Nabavizadeh, S.M., and Hoseini, S.J., Dalton Trans., 2019, vol. 48, no. 10, p. 3422.
  7. Chamyani, S., Shahsavari, H.R., Abedanzadeh, S., et al., Appl. Organomet. Chem., 2019, vol. 33, no. 1, p. 4674.
  8. Habibzadeh, S., Rashidi, M., Nabavizadeh, S.M., et al., Organometallics, 2010, vol. 29, no. 1, p. 82.
  9. Shahsavari, H.R., Aghakhanpour, R.B., Hossein-Abadi, M., et al., Appl. Organomet. Chem., 2018, vol. 32, no. 4, p. 4216.
  10. Aghakhanpour, R.B., Nabavizadeh, S.M., Mohammadi, L., et al., J. Organomet. Chem., 2015, vol. 781, p. 47.
  11. Nahaei, A., Rasekh, A., Rashidi, M., et al., J. Organomet. Chem., 2016, vols. 815–816, p. 35.
  12. Hoseini, S.J., Mohamadikish, M., Kamali, K., et al., Dalton Trans., 2007, vol. 17, p. 1697.
  13. Tsoureas, N. and Danopoulos, A.A., J. Organomet. Chem., 2015, vol. 775, p. 178.
  14. Bennett, M.A., Bhargava, S.K., Ke, M., et al., Dalton Trans., 2000, vol. 20, p. 3537.
  15. Kinzhalov, M. and Luzyanin, K., Russ. J. Inorg. Chem., 2022, vol. 67, p. 48.
  16. Serra, D., Cao, P., Cabrera, J., et al., Organometallics, 2011, vol. 30, no. 7, p. 1885.
  17. Mastrocinque, F., Anderson, C.M., Elkafas, A.M., et al., J. Organomet. Chem., 2019, vol. 880, p. 98.
  18. Prokopchuk, E.M. and Puddephatt, R.J., Organometallics, 2003, vol. 22, no. 3, p. 563.
  19. Katkova, S.A., Kinzhalov, M.A., Tolstoy, P.M., et al., Organometallics, 2017, vol. 36, no. 21, p. 4145.
  20. Kashina, M.V., Karcheuski, A.A., Kinzhalov, M.A., et al., Molecules, 2023, vol. 28, no. 23, p. 7764. https://doi.org/10.3390/molecules28237764
  21. Hubschle, C.B., Sheldrick, G.M., and Dittrich, B., J. Appl. Crystallogr., 2011, vol. 44, no. 6, p. 1281.
  22. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.
  23. Oxford Diffraction, CrysAlis PRO, Yarnton: Oxford Diffraction Ltd, 2009.
  24. Kashina, M.V., Luzyanin, K.V., Katlenok, E.A., et al., Dalton Trans., 2022, vol. 51, no. 17, p. 6718.
  25. Stuart, B.H., Infrared Spectroscopy: Fundamentals and Applications, New York: Wiley, 2004.
  26. Fujisawa, K., Kobayashi, Y., Okano, M., et al., Molecules, 2023, vol. 28, no. 7, p. 2936.
  27. Akhmadullina, N.S., Borissova, A.O., Garbuzova, I.A., et al., Z. Anorg. Allg. Chem., 2013, vol. 639, no. 2, p. 392.
  28. Ghedini, M., Pucci, D., Crispini, A., et al., Organometallics, 1999, vol. 18, no. 11, p. 2116.
  29. Exposito, J.E., Aullon, G., Bardaji, M., et al., Dalton Trans., 2020, vol. 49, no. 38, p. 13326.
  30. Fatemeh, N.H., Farasat, Z., Nabavizadeh, S.M., et al., J. Organomet. Chem., 2019, vol. 880, p. 232.
  31. Jamali, S., Czerwieniec, R., Kia, R., et al., Dalton Trans., 2011, vol. 40, no. 36, p. 9123.
  32. Exposito, J.E., Alvarez-Paino, M., Aullon, G., et al., Dalton Trans., 2015, vol. 44, no. 36, p. 16164.
  33. Shafaatian, B. and Heidari, B., J. Organomet. Chem., 2015, vol. 780, p. 34.
  34. Frauhiger, B.E., White, P.S., and Templeton, J.L., Organometallics, 2012, vol. 31, no. 1, p. 225.
  35. Altus, K.M., Bowes, E.G., Beattie, D.D., et al., Organometallics, 2019, vol. 38, no. 10, p. 2273.
  36. Katkova, S.A., Kozina, D.O., Kisel, K.S., et al., Dalton Trans., 2023, vol. 52, no. 14, p. 4595.
  37. Owen, J.S., Labinger, J.A., and Bercaw, J.E., J. Am. Chem. Soc., 2004, vol. 126, no. 26, p. 8247.
  38. Hardman, N.J., Abrams, M.B., Pribisko, M.A., et al., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, no. 15, p. 1955.
  39. Meyer, D., Ahrens, S., and Strassner, T., Organometallics, 2010, vol. 29, no. 15, p. 3392.
  40. Kelly, M.E., Dietrich, A., Gomez-Ruiz, S., et al., Organometallics, 2008, vol. 27, no. 19, p. 4917.
  41. Maidich, L., Zucca, A., Clarkson, G.J., et al., Organometallics, 2013, vol. 32, no. 11, p. 3371.
  42. Shaw, P.A. and Rourke, J.P., Dalton Trans., 2017, vol. 46, no. 14, p. 4768.
  43. Zhang, F., Broczkowski, M.E., Jennings, M.C., et al., Can. J. Chem., 2005, vol. 83, nos. 6–7, p. 595.
  44. Shaw, P.A., Phillips, J.M., Clarkson, G.J., et al., Dalton Trans., 2016, vol. 45, no. 28, p. 11397.
  45. Yahav, A., Goldberg, I., and Vigalok, A., Organometallics, 2005, vol. 24, no. 23, p. 5654.
  46. Westra, A.N., Bourne, S.A., and Koch, K.R., Dalton Trans., 2005, no. 17, p. 2916.
  47. Westra, A.N., Bourne, S.A., Esterhuysen, C., et al., Dalton Trans., 2005, no. 12, p. 2162.
  48. Goldberg, K.I., Yan, J., and Breitung, E.M., J Am. Chem. Soc., 1995, vol. 117, no. 26, p. 6889.
  49. Baar, C.R., Jenkins, H.A., Vittal, J.J., et al., Organometallics, 1998, vol. 17, no. 13, p. 2805.
  50. Fischer, E.O. and Maasbol, A., Chem. Ber., 1967, vol. 100, no. 7, p. 2445.
  51. Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.
  52. Desiraju, G.R., Ho, P.S., Kloo, L., et al., Pure Appl. Chem., 2013, vol. 85, no. 8, p. 1711

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1

Download (179KB)
3. Fig. 1. Fragment of the 1H,13C-HMBC IIa ∙ CF3CO2H NMR spectrum

Download (167KB)
4. Fig. 2. Molecular structures of IIa ∙ (CH3)2CO (a) and IIIa ∙ CH2Cl2 (b) in thermal ellipsoids of 50% probability. The solvent molecules are hidden

Download (515KB)
5. Fig. 3. Supramolecular structure of IIIv in thermal ellipsoids of 50% probability

Download (233KB)

Copyright (c) 2024 Российская академия наук