Lanthanide Complexes with 1,4,7-Trimethyl-1,4,7-triazacyclononane
- Authors: Degtyareva S.S.1,2, Bardonov D.A.1,2, Lysenko K.A.2,3, Minyaev M.E.1,4, Nifantyev I.E.1,2,3, Roitershtein D.M.1,2,4
-
Affiliations:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Higher School of Economics
- Lomonosov Moscow State University
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- Issue: Vol 50, No 5 (2024)
- Pages: 334-343
- Section: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667600
- DOI: https://doi.org/10.31857/S0132344X24050059
- EDN: https://elibrary.ru/NKBSRA
- ID: 667600
Cite item
Abstract
The reaction of 1,4,7-trimethyl-1,4,7-triazacyclononane with samarium, gadolinium, and terbium chloride tetrahydrofuranates gives mononuclear complexes [LnCl3(Me3tacn)(THF)n] (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane; Ln = Sm (I), Gd (II), n = 1; Ln = Tb (III), n = 0). The treatment of complexes I or II with 1,2,4-triphenylcyclopentadienyl potassium affords mono(cyclopentadienyl) complexes [CpPh3LnCl2(Me3tacn)] (CpPh3 = = 1,2,4-triphenylcyclopentadienyl; Ln = Sm (IV), Gd (V)). Complexes IV and V are formed even when a twofold excess of CpPh3K is used. The molecular structure of complexes I–V was established by X-ray diffraction analysis (CCDC nos. 2299485 (I), 2299487 (II), 2299486 (III), 2305352 (IV), 2306051 (V)).
Keywords
Full Text

About the authors
S. S. Degtyareva
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics
Email: kostya@xray.ineos.ac.ru
Russian Federation, Moscow; Moscow
D. A. Bardonov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics
Email: kostya@xray.ineos.ac.ru
Russian Federation, Moscow; Moscow
K. A. Lysenko
Higher School of Economics; Lomonosov Moscow State University
Author for correspondence.
Email: kostya@xray.ineos.ac.ru
Russian Federation, Moscow; Moscow
M. E. Minyaev
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: kostya@xray.ineos.ac.ru
Russian Federation, Moscow; Moscow
I. E. Nifantyev
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics; Lomonosov Moscow State University
Email: kostya@xray.ineos.ac.ru
Russian Federation, Moscow; Moscow; Moscow
D. M. Roitershtein
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Higher School of Economics; Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
Email: roiter@yandex.ru
Russian Federation, Moscow; Moscow; Moscow
References
- Ortu, F., Chem. Rev., 2022, vol. 122, no. 6, p. 6040.
- Baisch, U., DellʹAmico, D.B., Calderazzo, F., et al., Inorg. Chim. Acta, 2004, vol. 357, no. 5, p. 1538.
- Rogers, R.D., Voss, E.J., and Etzenhouser, R.D., Inorg. Chem., 1988, vol. 27, no. 3, p. 333.
- Gompa, T.P., Rice, N.T., Russo, D.R., et al., Dalton Trans., 2019, vol. 48, no. 23, p. 8030.
- Petricek, S., Demsar, A., and Golic, L., Polyhedron, 1998, vol. 18, nos. 3–4, p. 529.
- Li, J.-S., Neumuller, B., and Dehnicke, K., Z. Anorg. Allg. Chem., 2002, vol. 628, no. 1, p. 45.
- Bardonov, D.A., Komarov, P.D., Ovchinnikova, V.I., et al., Organometallics, 2021, vol. 40, no. 9, p. 1235.
- Sadrtdinova, G.I., Bardonov, D.A., Lyssenko, K.A., et al., Mendeleev Commun., 2023, vol. 33, no. 3, p. 357.
- Mortis, A., Maichle-Mossmer, C., and Anwander, R., Organometallics, 2023, vol. 42, no. 11, p. 1158.
- Bigmore, H.R., Lawrence, S.C., Mountford, P., et al., Dalton Trans., 2005, vol. 34, no. 4, p. 635.
- Lawrence, S.C., Ward, B.D., Dubberley, S.R., et al., Chem. Commun., 2003, vol. 39, no. 23, p. 2880.
- Barisic, D., Diether, D., Maichle-Mossmer, C., et al., J. Am. Chem. Soc., 2019, vol. 141, no. 35, p. 13931.
- Bambirra, S., Meetsma, A., and Hessen, B., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2007, vol. 63, no. 12, p. m2891.
- Wedal, J.C., Ziller, J.W., and Evans, W.J., Dalton Trans., 2023, vol. 52, no. 15, p. 4787.
- Wedal, J.C., Murillo, J., Ziller, J.W., et al., Inorg. Chem., 2023, vol. 62, no. 15, p. 5897.
- Hajela, S., Schaefer, W.P., and Bercaw, J.E., J. Organomet. Chem., 1997, vol. 532, nos 1-2, p. 45.
- Curnock, E., Levason, W., Light, M.E., et al., Dalton Trans., 2018, vol. 47, no. 17, p. 6059.
- Edelmann, F.T. and Poremba, P., Synthetic Methods of Organometallic and Inorganic Chemistry (Herrman/Brauer), Edelmann, F.T. and Herrmann, W.A., Eds., Stuttgart, 1997, p. 34.
- Hirsch, S.S. and Bailey, W.J., Org. Chem., 1978, vol. 43, no. 21, p. 4090.
- Madison, S.A. and Batal, D.J., US Patent 5284944A, 1994.
- APEX-III, Madison: Bruker AXS Inc., 2019.
- Krause, L., Herbst-Irmer, G.M., Sheldrick, D., et al., J. Appl. Crystallogr., 2015, vol. 48, p. 3.
- CrysAlisPro. Rigaku Oxford Diffraction, Version 1.171.42, 2023.
- Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, p. 3.
- Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, p. 3.
- Cirera, J., Ruiz, E., and Alvarez, S., Organometallics, 2005, vol. 24, no. 7, p. 1556.
- Stellfeldt, D., Meyer, G., and Deacon, G.B., Z. Anorg. Allg. Chem., 1999, vol. 625, no. 8, p. 1252.
- Evans, W.J., Gummerschmeir, T.S., and Ziller, J.W., Appl. Organomet. Chem., 1995, vol. 9, nos 5-6, p. 437.
- Bienfait, A.M., Wolf, B.M., Tornroos, K.W., et al., Organometallics, 2016, vol. 35, no. 21, p. 3743.
- Roitershtein, D.M., Puntus, L.N., Vinogradov, A.A., et al., Inorg. Chem., 2018, vol. 57, no. 16, p. 10199.
- Degtyareva, S.S., Bardonov, D.A., Lysenko, K.A., et al., Russ. J. Coord. Chem., 2023, vol. 49, no. 8, p. 513. https://doi.org/10.1134/S107032842370063X
Supplementary files
