Octahedral Halide Clusters of Niobium and Tantalum Bearing the Cluster Core {M6X12}
- Авторлар: Shamshurin M.V.1, Sokolov M.N.1
-
Мекемелер:
- Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Шығарылым: Том 50, № 10 (2024)
- Беттер: 629-647
- Бөлім: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667652
- DOI: https://doi.org/10.31857/S0132344X24100012
- EDN: https://elibrary.ru/LQMAKJ
- ID: 667652
Дәйексөз келтіру
Аннотация
Synthesis methods, molecular and electronic structures, and reactivity of the family of the octahedral clusters of niobium and tantalum halides bearing the {M6X12} cluster core are reviewed. Possible fields of the practical use of this class of compounds are considered.
Толық мәтін

Авторлар туралы
M. Shamshurin
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: caesar@niic.nsc.ru
Ресей, Novosibirsk
M. Sokolov
Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: caesar@niic.nsc.ru
Ресей, Novosibirsk
Әдебиет тізімі
- Prokopuk N., Shriver D.F. // Adv. Inorg. Chem. 1998. V. 56. P. 1.
- Artelt H.M., Meyer G. // Z. Kristallogr. Cryst. Mater. 1993. V. 206. № 2. P. 306.
- Simon A., Georg Schnering H., Wöhrle H., Schäfer H. // Z. Anorg. Allg. Chem. 1965. V. 339. № 3–4. P. 155.
- Lin Z., Williams I.D. // Polyhedron. 1996. V. 15. № 19. P. 3277.
- Schäfer H., Gerken R., Scholz H. // Z. Anorg. Allg. Chem. 1965. V. 335. № 1–2. P. 96.
- Schäfer H., Dohmann K.-D. // Z Anorg Allg Chem. 1959. V. 300. № 1–2. P. 1.
- Schäfer H., Schnering H.G., Niehues K.J., Nieder-Vahrenholz H.G. // J. Less. Comm. Met. 1965. V. 9. № 2. P. 95.
- Von Schnering H.G., Vu D., Jin S.L., Peters K. // Z. Kristallogr. 1999. V. 214. № 1. P. 15.
- Habermehl K., Mudring A., Meyer G. // Eur. J. Inorg. Chem. 2010. P. 4075.
- McCarley R.E., Boatman J.C. // Inorg. Chem. 1965. V. 4. P. 1486.
- Hughes B.G., Meyer J.L., Fleming P.B., McCarley R. // Inorg Chem. 1970. V. 9. № 6. P. 1343.
- Sokolov M.N., Abramov P.A., Mikhailov M. A. et al. // Z. Anorg. Allg. Chem. 2010. V. 636. № 8. P. 1543.
- Shamshurin M.V., Abramov P.A., Mikhaylov M.A., Sokolov M.N. // J. Struct. Chem. 2022. V. 63. № 1. P. 81.
- Womelsdorf H., Meyer H.-J., Lachgar, A. // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 908.
- Baján B., Meyer H. // Z. Anorg. Allg. Chem. 1997. V. 623. № 1–6. P. 791.
- Ströbele M., Meyer H-J. // Z. Naturforsch. 2001. 56b. P. 1025.
- Lachgar A., Meyer H.-J. // J Solid State Chem. 1994. V. 110. № 1. P. 15.
- Womelsdorf H., Meyer H.-J. // Z Kristallogr Cryst Mater. 1995. V. 210. № 8. P. 608.
- Duraisamy T., Hay D. N., Messerle L. et al. // Inorg. Synth. 2014. V. 36. P. 1.
- Whittaker A.G., Mingos D.M.P. // Dalton Trans. 1995. № 12. P. 2073.
- Sitar J., Lachgar A., Womelsdorf H. et al. // J. Solid State Chem. 1996. V. 122. № 2. P. 428.
- Nägele A., Anokhina E., Sitar J. et al. // Z. Naturforsch. B. 2000. V. 55. № 2. P. 139.
- Duraisamy T., Lachgar A. // Acta Crystallogr. C. 2003. V. 59. № 4. P. 127.
- Duraisamy T., Qualls J.S., Lachgar A. // J. Solid State Chem. 2003. V. 170. № 2. P. 227.
- Cordier S., Perrin C., Sergent M. // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
- Ramlau R., Duppel V., Simon A. et al. // J. Solid State Chem. 1998. V. 141. № 1. P. 140.
- Cordier S., Perrin C., Sergent M. //J. Solid State Chem. 1995. V. 118. №. 2. P. 274.
- Kòrösy., F. // J. Am. Chem. Soc. 1939. V. 61. № 4. P. 838.
- Shamshurin M. V., Mikhaylov M. A., Sukhikh T. et al. // Inorg Chem. 2019. V. 58. № 14. P. 9028.
- Bauer D., Schnering H.G., Schäfer H. // J. Less Comm. Met. 1968. V. 14. № 4. P. 476.
- Sägebarth M., Simon A. // Z. Anorg. Allg. Chem. 1990. V. 587. № 1. P. 119.
- Cordier S., Hernandez O., Perrin C. // J. Fluorine Chem. 2001. V. 107. № 2. P. 205.
- Cordier S., Simon A. // Solid State Sci. 1999. V. 1. №. 4. P. 199.
- Cordier S., Hernandez O., Perrin C. //J. Solid State Chem. 2001. V. 158. № 2. P. 327.
- Cordier S., Hernandez O., Perrin C. //J. Solid State Chem. 2002. V. 163. №.. 1. P. 319.
- Cordier S., Perrin C. //J. Solid State Chem. 2004. V. 177. № 3. P. 1017.
- Mingos. D.M P. // Acc. Chem. Res. 1984. V. 17. № 9. P. 311.
- Robin M.B., Kuebler N.A. // Inorg. Chem. 1965. V. 4. № 7. P. 978.
- Cotton F.A., Haas T.E. // Inorg. Chem. 1964. V. 3. № 1. P. 10.
- Schott E., Zarate X., Arratia-Pérez R. // Polyhedron. 2012. V. 36. № 1. P. 127.
- Shamshurin M.V., Martynova., S.A., Sokolov.M.N. et al. // Polyhedron. 2022. V. 226. P. 116107.
- Juza D., Schäfer H. // Z. Anorg. Allg. Chem. 1970. V. 379. № 2. P. 122.
- Perrin C., Ihmaine S., Sergent M. // New J. Chem. 1988. V. 12. № 6–7. P. 321.
- Cordier S., Perrin C., Sergent M. // Z. Anorg. Allg. Chem. 1993. V. 619. № 4. P. 621.
- Ihmaïne S., Perrin C., Peña O. et al. // Physica. B. 1990. V. 163. P. 615.
- Schäfer H., Spreckelmeyer B. // J. Less-Comm. Met. 1966. V. 11. № 1. P. 73.
- Vojnović M., Antolić S., Kojić‐Prodić B. et al. // Z. Anorg. Allg. Chem. 1997. V. 623. № 8. P. 1247.
- Simon A., von Schnering H.-G., Schäfer H. // Z. Anorg. Allg. Chem. 1968. V. 361. № 5–6. P. 235.
- Koknat F. W., McCarley R. E. // Inorg. Chem. 1972. V. 11. P. 812.
- Wilmet M., Lebastard C., Sciortino F. et al. // Dalton Trans. 2021. V. 50. P. 8002.
- Kamiguchi S., Watanabe M., Kondo K. et al. // J. Mol. Cat. A. 2003. V. 203. P. 153.
- Ivanov A.A., Pozmogova T.N., Solovieva A.O. et al. // Chem. Eur. J. 2020. V. 26. P. 7479. https://doi.org/10.1002/chem.202000739.
- Moussawi M.A., Leclerc-Laronze N., Floquet S. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 12793.
- Širac S., Planinić P., Marić L. et al. // Inorg. Chim. Acta. 1998. V. 271. № 1–2. P. 239.
- Brničevič N., Nothig-Hus D., Kojic-Prodic B. et al. // Inorg. Chem. 1992. V. 31. № 19. P. 3924.
- Beck U., Simon A., Brničević N. et al. // Croat Chem Acta. 1995. V. 68. P. 837.
- Brničevič N., Muštovič F., McCarley R.E. // Inorg Chem. 1988. V. 27. P. 4532.
- Flemming A., Köckerling M. // Angew. Chem. Int. Ed. 2009. V. 48. P. 2605.
- Schröder F., Köckerling M. // J. Clust. Sci. 2022. V. 22. Р. 1.
- Schröder F., Köckerling M. // Z. Anorg. Allg. Chem. 2021. V. 647. P. 1625.
- Reckeweg O., Meyer H. // Z. Anorg. Allg. Chem. 1996. V. 622. № 3. P. 411.
- Naumov N.G., Cordier S., Perrin C. // Solid State Sci. 2003. V. 5. № 10. P. 1359.
- Meyer H.-J. // Z Anorg Allg Chem. 1995. V. 621, № 6. P. 921.
- Pigorsch A., Köckerling M. // Cryst Growth Des. 2016. V. 16, № 8. P. 4240.
- Shamshurin M., Gushchin A., Adonin S. et al. // Inorg. Chem. 2022. V. 61. № 42. P. 16586.
- Yan B., Zhou H., Lachgar A. // Inorg Chem. 2003. V. 42. № 26. P. 8818.
- Zhang J.-J., Lachgar A. // Inorg Chem. 2015. V. 54. № 3. P. 1082.
- Fleming A., König J., Köckerling M. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 2527.
- Klendworth D.D., Walton R.A. // Inorg. Chem. 1981. V. 20. P. 1151.
- Field R.A., Kepert D.L. // J. Less Comm. Met. 1967. V. 13. № 4. P. 378.
- Imoto H. Hayakawa S., Morita N., Saito T. // Inorg Chem. 1990. V. 29. № 10. P. 2007.
- Field R.A., Kepert D.L., Robinson B.W. et al. // Dalton Trans. 1973. V. 18. P. 1858.
- Sperlich E., König J., Weiβ D.H. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. P. 233.
- Weiβ D.H., Schröder F., Köckerling M. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 345.
- Sperlich E., Köckerling M. // ChemistryOpen. 2021. V. 10. P. 248.
- Von Schnering H.G., Vu D., Jin S.L. et al. // Z. Kristallogr. 1999. V. 214. № 1. P. 15.
- Kuhn A., Dill S., Meyer H.J. // Z. Anorg. Allg. Chem. 2005. V. 631. № 9. P. 1565.
- Espenson J.H., Boone D.J. // Inorg. Chem. 1968. V. 7. № 4. P. 636.
- Jacobson R.A., Thaxton C.B. // Inorg. Chem. 1971. V. 10. № 7. P. 1460.
- Mikhailov M.A. Octahedral cluster niobium, tantalum, molybdenum, and tungsten halide complexes: Cand. Sci. (Chem.) Dissertation, Novosibirsk: Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 2013.
- Klendworth D.D., Walton R.A. // Inorg. Chem. 1981. V. 20. № 4. P. 1151.
- Beck U., Simon A., Širac S. et al. // Z. Anorg. Allg. Chem. 1997. V. 623. № 1. P. 59.
- Prokopuk N., Weinert C. S., Kennedy V. O. et al. // Inorg. Chim. Acta. 2000. V. 300. P. 951.
- König J., Köckerling M. // Chem. Eur. J. 2019. V. 25. № 61. P. 13836.
- Vogler A., Kunkely H. // Inorg. Chem. 1984. V. 23. № 10. P. 1360.
- Prokopuk N., Kennedy V.O., Stern C.L. et al. // Inorg. Chem. 1998. V. 37. № 19. P. 5001.
- Chapin W. H. // J. Am. Chem. Soc. 1910. V. 32. № 3. P. 323.
- Kamiguchi S., Nagashima S., Chihara., T. // Metals. 2014. V. 4. P. 84.
- Kamiguchi S., Nishida S., Kurokawa H. et al. // J. Mol. Catal. A. 2005. V. 226. P. 1.
- Nagashima S., Kamiguchi S., Chihara T. // Metals. 2014. V. 4. P. 235.
- Кamiguchi S., Noda M., Miyagishi Y. et al. // J. Mol. Catal. A. 2003. V. 195. P. 159.
- Nagashima S., Kamiguchi S., Ohguchi S. et al. // J. Clust. Sci. 2011. V. 22. P. 647.
- Kamiguchi S., Takahashi I., Kurokawa H. et al. // Appl. Catal. A. 2006. V. 309. P. 70.
- Kamiguchi S., Nakamura A., Suzuki A. et al. // J. Catal. 2005. V. 230. P. 204.
- Nagashima S., Kudo K., Yamazaki H. et al. // Appl. Catal. A. 2013. V. 450. P. 50.
- Nagashima S., Yamazaki H., Kudo K. et al. // Appl. Catal. A. 2013. V. 464. P. 332.
- Kamiguchi S., Nishida S., Takahashi I. et al. // J. Mol. Catal. A. 2006. V. 255. P. 117.
- Nagashima S., Kamiguchi S., Kudo K. et al. // Chem. Lett. 2011. V. 40. P. 78.
- Nagashima S., Sasaki T., Yamazaki H. Proceedings of the 7th International Symposium on Acid-Base Catalysis. Tokyo (Jpn): 2013. PA-051.
- Hernández J. S., Guevara D., Shamshurin M. et al. // Inorg. Chem. 2023. V. 62. № 46. P. 19060.
- Hernández J.S., Shamshurin M., Puche M. et al. // Nanomaterials. 2022. V. 12. P. 3647.
- Kato H., Kudo A. // Chem. Phys. Lett. 1998. V. 295. P. 487.
- Butts M.D., Torres A.S., Fitzgerald P.F. et al. // Invest. Radiol. 2016. V. 51. P. 786.
- Dahms S.O., Kuester M., Streb C. et al. // Acta Crystallogr. D. 2013. V. 69. P. 284.
- Zuev M.G., Larionov L.P. Tantalovye Rentgenokontrastnye Veshchestva (Tantalum X-Ray Constrast Compounds). Ekaterinburg: UrO RAN, 2002.
- Chakravarty S., Hix J.M.L., Wiewiora K.A. et al. // Nanoscale. 2020. V. 12. P. 7720.
- Lebastard C., Wilmet M., Cordier S. et al. // Nanomaterials. 2022. V. 12. P. 2052.
- Lebastard C., Wilmet M., Cordier S. et al. // Sci. Tech. Adv. Mater. 2022. V. 23. P. 446.
Қосымша файлдар
Қосымша файлдар
Әрекет
1.
JATS XML
2.
Fig. 1. Cluster anion [Ta6Br18]4- as an example of the coordination fragment [{M6X12}L6] (M = Ta (blue), X = L = Br (green))
Жүктеу (80KB)
3.
Fig. 2. Frontal projection of In[Nb6Cl15] structure: octahedrons represent Nb6 cluster nuclei connected by bridging Cl atoms; single atoms are In+ [14]
Жүктеу (109KB)
4.
Fig. 3. Structure of Li2[Nb6Cl16]: layer (left) and three-dimensional framework with the participation of lithium ions (grey balls, right) are shown
Жүктеу (233KB)
Жүктеу (93KB)
Жүктеу (64KB)
Жүктеу (65KB)
Жүктеу (67KB)
Жүктеу (80KB)
Жүктеу (77KB)
Жүктеу (76KB)
Жүктеу (5KB)
Жүктеу (5KB)
Жүктеу (6KB)
Жүктеу (4KB)
Жүктеу (4KB)
Жүктеу (4KB)
Жүктеу (4KB)
Жүктеу (3KB)
Жүктеу (6KB)
Жүктеу (6KB)
Жүктеу (7KB)
Жүктеу (6KB)
Жүктеу (7KB)
Жүктеу (6KB)
Жүктеу (7KB)
Жүктеу (6KB)
Жүктеу (41KB)
29.
Scheme 4. Schematic diagram of the catalytic cycle of photochemical oxidation of the {Ta6Br12} cluster nucleus
Жүктеу (56KB)
30.
Fig. 9. Energy diagram of electron transfer from the NSMO orbital [{Ta6Br12}Br2(H2O)4] to the p-system of graphene oxide
Жүктеу (59KB)
