BRAIN-DERIVED NEUROTROPHIC FACTOR AS AN INDICATOR OF CENTRAL NERVOUS SYSTEM DISEASES


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper reviews the literature on the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of many diseases of the central nervous system. It presents data of the studies showing a correlation between BDNF deficiency in the brain and blood tissues and neurodegenerative diseases, such as AlzheimePs, Huntington’s, Parkinson’s diseases, hypoxia, headaches and migraines, and psychoemotional disorders. It is shown that BDNF can serve as a marker for predicting the course of diseases and evaluating the efficiency of treatment.

Full Text

Restricted Access

About the authors

Yu. V Zykova

OOO «Medicine of Computer Technologies» Medical and Diagnostic Clinic

Krasnoyarsk

L. S Evert

Federal Research Center “Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences

MD, Research Institute for Medical Problems of the North Krasnoyarsk

T. V Potupchik

Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of Russia

Email: potupchik_tatyana@mail.ru
Candidate of Medical Sciences Krasnoyarsk

References

  1. Астраханова Т.А., Уразов М.Д., Усенко А.В. и др. BDNF-опосредованная регуляция функционального состояния митохондрий клеток головного мозга в условиях гипоксии. Современные технологии в медицине. 2018; 10 (3): 88-94
  2. Белоусова Н.П., Громова О.А., Пепеляев Е.Г. и др. Взаимосвязь когнитивных нарушений и уровня BDNF у лиц молодого возраста. Медицина в Кузбассе. 2017; 16 (4): 39-43
  3. Рудницкая Е.А., Колосова Н.Г., Стефанова Н.А. Нейротрофическое обеспечение головного мозга в онтогенезе и при развитии нейродегенеративных заболеваний. Вестник Московского Университета. Серия 16: Биология. 2016; 4: 72-82
  4. Тян К.В., Калинский П.П., Ракитова А.В. Тревожно-депрессивная симптоматика и уровень нейротрофического фактора головного мозга у пациентов с головной болью напряжения. Пермский медицинский журнал. 2017; 34 (6): 34-9
  5. Эверт Л.С., Потупчик Т.В., Реушева С.В. и др. Уровень мозгового нейротрофического фактора BDNF у подростков с дисплазией соединительной ткани и различными психосоматическими синдромами. Современные проблемы науки и образования. 2018; 5: 61
  6. Anderson M.A., Burda J.E., Ren Y. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016; 532 (7598): 195-200. doi: 10.1038/nature17623
  7. Badrlou E., Ghafouri-Fard S., Omrani M.D. et al. Expression of BDNF-Associated lncRNAs in Treatment-Resistant Schizophrenia Patients. Mol Neurosci. 2021; 5. Online ahead of print. doi: 10.1007/s12031-020-01772-9
  8. Bawari S., Sandro T., Archana A. et al. Targeting BDNF signaling by natural products: novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res. 2019; 148: 104458. doi: 10.1016/j.phrs.2019.104458.
  9. Beeri M.S., Sonnen J. Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurology. 2016; 86 (8): 702-3. doi: 10.1212/WNL.0000000000002389
  10. Blanco-Suârez E., Caldwell A.L., Allen N.J. Role of astrocyte-synapse interactions in CNS disorders. J Physiol. 2017; 595 (6): 1903-16. DOI: 10.1113/ JP270988
  11. Blandini F., Rinaldi L., Tassorelli C. et al. Peripheral levels of BDNF and NGF in primary headaches. Cephalalgia. 2006; 26 (2): 136-42. doi: 10.1111/j.1468-2982.2005.01006.x
  12. Boschen K.E., Klintsova A.Y. Neurotrophins in the brain: interaction with alcohol exposure during development. Vitamins and hormones. 2017; 104: 197-242. doi: 10.1016/bs.vh.2016.10.008
  13. Budni J., Bellettini-Santos T., Mina F. et al. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis. 2015; 6 (5): 331-41. doi: 10.14336/AD.2015.0825
  14. Chan A., Yan J., Csurhes P. et al. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: effect on outcome. J Neuroimmunol. 2015; 286: 42-7. doi: 10.1016/j.jneuroim.2015.06.013
  15. De Almeida Claudino F.C., Gonçalves L., Felipe Barreto Schuch F.B. et al. The Effects of Individual Psychotherapy in BDNF Levels of Patients With Mental Disorders: A Systematic Review. Front Psychiatry. 2020; 11: 445. DOI: 10.3389/ fpsyt.2020.00445
  16. Devi L., Ohno M. TrkB reduction exacerbates Alzheimer's disease-like signaling aberrations and memory deficits without affecting beta-amyloidosis in 5XFAD mice. TranslPsychiatry. 2015; 5 (5): e562. doi: 10.1038/tp.2015.55
  17. Eyileten C., Kaplon-Cieslicka A., Mirowska-Guzel D. et al. Antidiabetic effect of brain-derived neurotrophic factor and its association with inflammation in type 2 diabetes mellitus. J Diabetes Res. 2017; 2017: 1-14. doi: 10.1155/2017/2823671
  18. Ferreira R.N., de Miranda A.S., Rocha N.P. et al. Neurotrophic factors in Parkinson’s disease: what have we learned from pre-clinical and clinical studies? Curr Med Chem. 2018; 25: 3682-702. doi: 10.2174/0929867325666180313101536
  19. Fischer M., Wille G., Klien S. et al. Brain-derived neurotrophic factor in primary headaches. J Headache Pain. 2012; 13 (6): 469-75. doi: 10.1007/s10194-012-0454-5
  20. Gandolfi M., Smania N., Vella A. et al. Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plast. 2017; 2017: 1389475. doi: 10.1155/2017/1389475
  21. Geisel O., Banas R., Schneider M. et al. Serum levels of brain-derived neurotrophic factor in patients with internet use disorder. Psychiatry Res. 2013; 209 (3): 525-8. doi: 10.1016/j.psychres.2012.12.020.
  22. Gorshkov K., Aguisanda F., Thorne N. et al. Astrocytes as targets for drug discovery. Drug Discov Today. 2018; 23 (3): 673-80. DOI: 10.1016/j. drudis.2018.01.011
  23. Hing B., Sathyaputri L., Potash J.B. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2018; 177 (2): 143-67. doi: 10.1002/ajmg.b.32616
  24. Hwang K.S., Lazaris A.S., Eastman J.A. et al. Alzheimer’s Disease Neuroimaging Initiative. Plasma BDNF levels associate with Pittsburgh compound B binding in the brain. Alzheimers Dement. 2015; 1: 187-93. DOI: 10.1016/j. dadm.2015.01.005
  25. Johnson D., Lanahan A., Buck C.R. et al. Expression and structure of the human NGF receptor. Cell. 1986; 47 (4): 545-54. doi: 10.1016/0092-8674(86)90619-7
  26. Kaminari A., Giannakas N., Tzinia A. et al. Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer’s disease. Sci Rep. 2017; 7 (1): 683. doi: 10.1038/s41598-017-00794-5
  27. Kaplan D.R., Hempstead B.L., Martin-Zanca D. et al. The trk protooncogene product: a signal transducing receptor for nerve growth factor. Science. 1991; 252 (5005): 554-8. doi: 10.1126/science.1850549
  28. Kim H.S., Jeon I., Noh J.E. et al. Intracerebral Transplantation of BDNF-overexpressing Human Neural Stem Cells (HB1.F3.BDNF) Promotes Migration, Differentiation and Functional Recovery in a Rodent Model of Huntington’s Disease. Exp Neurobiol. 2020; 29 (2): 130-7. doi: 10.5607/en20011
  29. Kopec B.M., Zhao L., Rosa-Molinar E. et al. Non-invasive Brain Delivery and Efficacy of BDNF in APP/PS1 Transgenic Mice as a Model of Alzheimer’s Disease. Med Res Arch. 2020; 8 (2): 2043. doi: 10.18103/mra.v8i2.2043
  30. Lesniak A., Poznanski P., Religa P. et al. Loss of Brain-Derived Neurotrophic Factor (BDNF) Resulting From Congenital- Or Mild Traumatic Brain Injury-Induced Blood-Brain Barrier Disruption Correlates With Depressive-Like Behaviour. Neuroscience. 2021; 17: S0306-4522(21)00020-8. DOI: 10.1016/j. neuroscience.2021.01.013
  31. Lu B., Nagappan G., Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014; 220: 223-50. doi: 10.1007/978-3-642-45106-5_9
  32. Naegelin Y., Saeuberli K., Schaedelin S. et al. Levels of brain-derived neurotrophic factor in patients with multiple sclerosis. Ann Clin Transl Neurol. 2020; 7 (11): 2251-61. doi: 10.1002/acn3.51215
  33. Nguyen K.Q., Rymar V.V., Sadikot A.F. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington’s Disease. Front Cell Neurosci. 2016; 10: 37. DOI: 10.3389/ fncel.2016.00037
  34. Miranda M., Morici J.F., Zanoni M.B. et al. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019; 13: 363. doi: 10.3389/fncel.2019.00363
  35. Paillard T., Rolland Y., de Souto Barreto P. Protective Effects of Physical Exercise in Alzheimer’s Disease and Parkinson’s Disease: A Narrative Review. J Clin Neurol. 2015; 11 (3): 212-9. doi: 10.3988/jcn.2015.11.3.212
  36. Palasz E., Wysocka A., Gasiorowska A. et al. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int J Mol Sci. 2020; 21 (3): 1170. doi: 10.3390/ijms21031170
  37. Palma-Âlvarez R.F., Ros-Cucurull E., Amaro-Hosey K. et al. Peripheral levels of BDNF and opiate-use disorder: literature review and update. Rev Neurosci. 2017; 28 (5): 499-508.
  38. Pins B., Cifuentes-Diaz C., Farah A.T. et al. Conditional BDNF Delivery from Astrocytes Rescues Memory Deficits, Spine Density, and Synaptic Properties in the 5xFAD Mouse Model of Alzheimer Disease. J Neurosci. 2019; 39 (13): 2441-58. doi: 10.1523/JNEUROSCI.2121-18.2019
  39. Rios M. Neurotrophins and the regulation of energy balance and body weight. Handb Exp Pharmacol. 2014; 220: 283-307. doi: 10.1007/978-3-642-45106-5_11
  40. Satomura E., Baba H., Nakano Y. et al. Correlations between brain-derived neurotrophic factor and clinical symptoms in medicated patients with major depression. J Affect Disord. 2011; 135 (1-3): 332-5. DOI: 10.1016/j. jad.2011.06.041
  41. Sheeler C., Rosa J.G., Borgenheimer E. et al. Post-symptomatic Delivery of Brain-Derived Neurotrophic Factor (BDNF) Ameliorates Spinocerebellar Ataxia Type 1 (SCA1) Pathogenesis. Cerebellum. 2021; Online ahead of print. DOI: 10.1007/ s12311-020-01226-3
  42. Song J.H, Yu J.T., Tan L. Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol. 2015; 52: 1477-93. doi: 10.1007/s12035-014-8958-4
  43. Sordyl J., Kopyta I., Sarecka-Hujar B. et al. Lipid levels and selected biomarkers of vascular changes in children with idiopathic headaches - a preliminary report. Arch Med Sci. 2019; 15 (1): 120-5. DOI: 10.5114/ aoms.2018.73983
  44. Tanure M.T., Gomez R.S., Hurtado R.C. et al. Increased serum levels of brain-derived neurotropic factor during migraine attacks: a pilot study. J Headache Pain. 2010; 11 (5): 427-30. doi: 10.1007/s10194-010-0233-0
  45. Toda T., Gage F.H. Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2017; 373: 693-709. doi: 10.1007/s00441 -017-2735-4
  46. Ventriglia M., Zanardini R., Bonomini C. et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. BiomedRes Int. 2013; 2013: 901082. doi: 10.1155/2013/901082
  47. Weinstein G., Preis S.R., Beiser A.S. et al. Clinical and environmental correlates of serum BDNF: a descriptive study with plausible implications for AD research. Curr Alzheimer Res. 2017; 14: 722-30. doi: 10.2174/156720501466617 0203094520
  48. Zaman Emon M.P., Das R., Nishuty N.L.et al. Reduced serum BDNF levels are associated with the increased risk for developing MDD: a case-control study with or without antidepressant therapy. Res Notes. 2021; 13 (1): 83. DOI: 10.1186/ s13104-020-04952-3
  49. Zhang X., Xue Y., Li J. et al. The involvement of ADAR1 in antidepressant action by regulating BDNF via miR-432. Behav Brain Res. 2021; 402: 113087. doi: 10.1016/j.bbr.2020.113087
  50. Zhang Z., Liu X., Schroeder J.P. et al. 7,8-Dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2014; 39 (3): 638-50. doi: 10.1038/npp.2013.243

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies