Current approaches to detecting, evaluating, and predicting congenital malformations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The high frequency of embryonic and fetal losses caused by Intrauterine malformations (lUMs) and the significant contribution of malformations to the structure of causes of Infant mortality, morbidity, and disability define their important medical and social values. The European Surveillance of Congenital Anomalies (EUROCA T) has shown that 1.7 million newborns with lUMs are born annually In the world. The WHO has estimated that annually 303,000 newborns die within 4 weeks of birth worldwide due to congenital anomalies. According to various researchers, the contribution of this pathology to the structure of infant mortality In the Russian Federation is up to 35-40%, whereas the rate of birth of babies with lUMs is 4-6%. The results of numerous studies demonstrate the heterogeneity of the causes of lUMs (genetic, chromosomal, teratogenic, etc.), although the nature of IUMs remains unknown and is multi factorial in most cases (65-70%). Both epidemiological and experimental studies are a source of information to recognize potential risk factors for I UMs and to generate hypotheses for future Investigations when studying the Interaction between environmental factors and malformations.

Full Text

Restricted Access

About the authors

T. V Pikuza

I.M. Sechenov First Moscow State Medical University (Sechenov University)

R. A Chilova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: rchilova@gmail.com

E. A Sokova

Research Center for Examination of Medical Products, Ministry of Health of Russia

E. V Zhukova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

R. E Kazakov

Research Center for Examination of Medical Products, Ministry of Health of Russia

References

  1. Складановская T.B., Свиридова Н.И. Пороки развития плода - фолат-зависимая патология. Лекарственный вестник. 2013; 7 (4): 17-20 [Skladanovskaya T.V., Sviridova N.I. Poroki razvitiya ploda - folat-zavisimaya patologiya. Lekarstvennyi vestnik. 2013; 7 (4): 17-20 (in Russ.)].
  2. Кукес В.Г., Сокова E.A, Игнатьев И.В. и др. Гликогротеин Р и здоровье плода. Проблемы репродукции. 2010; 5: 78-84 [Kukes V.G., Sokova Е.А., Ignat’ev I.V. et al. Glycoprotein p and fetal condition. Problemy reproduktsii. 2010; 5: 78-84 (in Russ.)].
  3. Новикова C.B., Жученко Л.А. Профилактика врожденных пороков развития. РМЖ. Мать и дитя. 2015; 1:25 [Novikova S.V., Zhuchenko L.A. Profilaktika vrozhdennykh porokov razvitiya. RMZh. Mat I dltya. 2015; 1: 25 (in Russ.)].
  4. Hamilton B.E., Hoyert, D.L., Martin, J.A. et al. Annual summary of vital statistics: 2010-2011. Pediatrics. 2013; 131: 548-58. doi: 10.1542/peds.2012-3769
  5. Staud F., Cerveny L., Ceckova M. Pharmacotherapy in pregnancy: effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target. 2012; 20: 736-63. doi: 10.3109/1061186X.2012.716847
  6. Bloise E., Ortiga-Garvalho T.M., Reis F.M. et al. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update. 2016; 22:164- 81. doi: 10.1093/humupd/dmv049
  7. Brayboy L.M., Knapik L.O., Long S. Ovarian hormones modulate multidrug resistance transporter in the ovary. Contracept Reprod Med. 2018; 3: 26. doi: 10.1186/S40834-018-0076-7
  8. Moisiadis V.G., Matthews S.G. Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol. 2014; 10: 403-11. DOI: 10.1038/ nrendo.2014.74
  9. Wang X., Cabrera R.M., Li Y. et al. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice. FASEBJ. 2013; 27 (3): 1167-75. doi: 10.1096/fj.12-218495
  10. Kerb R. Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett. 2006; 234 (1): 4-33. DOI: 10.1016/]. canlet.2005.06.051
  11. Daud A.NA., Bergman J.E.H., Bakker M.K. et al. Pharmacogenetics of drug-induced birth defects: the role of polymorphisms of placental transporter proteins. Pharmacogenomlcs. 2014; 15 (7): 1029-41. doi: 10.2217/pgs.14.62
  12. Obermann-Borst SA., Isaacs A., Younes Z. et al. General maternal medication use, folic acid, the MDR1 C3435T polymorphism, and the risk of a child with a congenital heart defect. Am J Obstet Gynecol. 2011; 204 (3): 236.e1-236. e8. doi: 10.1016/|.a|og.2010.10.911
  13. Wang C., Zhou K., Xie L. et al. Maternal Medication Use, Fetal 3435 C>T Polymorphism of the ABCB1 Gene, and Risk of Isolated Septal Defects in a Han Chinese Population. Pediatr Cardiol. 2014; 35 (7): 1132-41. doi: 10.1007/s00246- 014-0906-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Russkiy Vrach Publishing House