The peripheral blood count of regulatory T cells in women and the efficiency of in vitro fertilization


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To reveal a relationship between the levels of regulatory T (T eg) cells in the peripheral blood of patients and the occurrence of conception after in vitro fertilization (IVF). Subject and methods. A prospective pilot study was conducted in 36 tubal infertility patients included in an IVF program. The levels of T eg cells with the CD4 +CD25 highCD127 low/- phenotype in the peripheral blood CD4+ lymphocyte subpopulation were estimated in the patients and the relationship between the count of T cells and the occurrence of conception was analyzed. Results. The count of Treg cells in a group of women who became pregnant was substantially lower (p = 0.0045). ROC analysis (the area under the curve was 0.781) showed that the conception rate was significantly higher when the level of T eg cells was 46.3% (p = 0.0003). Conclusion. The count of T reg cells in the peripheral blood of women is a prognostic factor to estimate the probability of conception in the IVF program.

Full Text

Restricted Access

About the authors

Marina Arkadyevna Nikolaeva

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: nikolaeva_ma@mail.ru
Doctor of Science, Leading researcher, Laboratory of Clinical Immunology

Elena Olegovna Stepanova

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: elena2404.07@mail.ru
Junior researcher, Laboratory of Clinical Immunology

Alina Anatolievna Babayan

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: alinababayan@yandex.ru
Graduate student, Department of Assisted Technologies in the Infertility Treatment

Lyudmila Viktorovna Vanko

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: LVanko@oparina4.ru
M.D., Professor, Leading researcher, Laboratory of Clinical Immunology

Veronika Yuryevna Smolnikova

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: v_smolnikova@oparina4.ru
M.D., Leading Researcher, Department of Assisted Technologies in the Infertility Treatment

Elena Anatolievna Kalinina

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
Doctor of Science,Head of the Department of Assisted Technologies in the Infertility Treatment

Lyubov Valentinovna Krechetova

Academician V.I. Kulakov Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: l_krechetova@oparina4.ru
Ph.D. in medical sciences, Head of Laboratory of Clinical Immunology

References

  1. Ferraretti A.P., Goossens V., Kupka M., Bhattacharya S., de Mouzon J., Castilla J.A. et al. Assisted reproductive technology in Europe, 2009: results generated from European registers by ESHRE. Hum. Reprod. 2013; 28(9): 2318-31.
  2. Корсак В.С., Смирнова А.А., Шурыгина О.В. Регистр центров ВРТ России. Отчет за 2011 год. Проблемы репродукции. 2013; 5: 7-21
  3. Robertson S.A. Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 2005; 322(1): 43-52.
  4. Von Wolff M., Rösner S., Thöne C., Pinheiro R.M., Jauckus J., Bruckner T. et al. Intravaginal and intracervical application of seminal plasma in in vitro fertilization or intracytoplasmic sperm injection treatment cycles - a double-blind, placebo-controlled, randomized pilot study. Fertil. Steril. 2009; 91(1): 167-72.
  5. Chicea R., Ispasoiu F., Focsa M. Seminal plasma insemination during ovumpickup-a method to increase pregnancy rate in IVF/ICSI procedure. A pilot randomized trial. J. Assist. Reprod. Genet. 2013; 30(4): 569-74.
  6. Friedler S., Ben-Ami I., Gidoni Y., Strassburger D., Kasterstein E., Maslansky B. et al. Effect of seminal plasma application to the vaginal vault in in vitro fertilization or intracytoplasmic sperm injection treatment cycles-a double-blind, placebo-controlled, randomized study. J. Assist. Reprod. Genet. 2013; 30(7): 907-11.
  7. Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various immune diseases. J. Immunol. 1995; 155(3): 1151-64.
  8. Chen W., Jin W., Hardegen N., Lei K.J., Li L., Marinos N. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003; 198(12): 1875-86.
  9. Darrasse-Jèze G., Klatzmann D., Charlotte F., Salomon B.L., Cohen J.L. CD4+CD25+ regulatory/suppressor T cells prevent allogeneic fetus rejection in mice. Immunol. Lett. 2006; 102(1): 106-9.
  10. Shima T., Sasaki Y., Itoh M., Nakashima A., Ishii N., Sugamura K. et al. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 2010; 85(2): 121-9.
  11. Zhou J., Wang Z., Zhao X., Wang J., Sun H., Hu Y. An increase of Treg cells in the peripheral blood is associated with a better in vitro fertilization treatment outcome. Am. J. Reprod. Immunol. 2012; 68(2): 100-6.
  12. Schlossberger V., Schober L., Rehnitz J., Schaier M., Zeier M., Meuer S. et al. The success of assisted reproduction technologies in relation to composition of the total regulatory T cell (Treg) pool and different Treg subsets. Hum. Reprod. 2013; 28(11): 3062-73.
  13. Назаренко Т.А. Стимуляция функции яичников. М.: МЕДпресс-информ; 2009. 272 с.
  14. Zweig M.H., Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 1993; 39(4): 561-77
  15. Степанова Е.О., Николаева М.А., Ходжаева З.С., Кречетова Л.В., Зиганшина М.А., Бабаян А.А. и др. Cравнение двух способов фенотипирования лимфоцитов периферической крови у пациенток с невынашиванием беременности. Российский аллергологический журнал. 2012; 1: 296-7
  16. Seddiki N., Santner-Nanan B., Martinson J., Zaunders J., Sasson S., Landay A. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 2006; 203(7): 1693-700
  17. Teles A., Zenclussen A.C., Schumacher A. Regulatory T cells are baby’s best friends. Am. J. Reprod. Immunol. 2013; 69(4): 331-9
  18. Tilburgs T., Roelen D.L., van der Mast B.J., de Groot-Swings G.M., Kleijburg C., Scherjon S.A. et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J. Immunol. 2008; 180(8): 5737-45.
  19. Worbs T., Förster R. A key role for CCR7 in establishing central and peripheral tolerance. Trends Immunol. 2007; 28(6): 274-80.
  20. Teles A., Schumacher A., Kühnle M.C., Linzke N., Thuere C., Reichardt P. et al. Control of uterine microenvironment by foxp3 (+) cells facilitates embryo implantation. Front. Immunol. 2013; 4: 158.
  21. Guerin L.R., Moldenhauer L.M., Prins J.R., Bromfield J.J., Hayball J.D., Robertson S.A. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol. Reprod. 2011; 85(2): 397-408.
  22. Jurisicova A., Antenos M., Kapasi K., Meriano J., Casper R.F. Variability in the expression of trophectodermal markers beta-human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific beta-1 glycoprotein by the human blastocyst. Hum. Reprod. 1999; 14(7): 1852-8.
  23. Lopata A., Hay D.L. The potential of early human embryos to form blastocysts, hatch from their zona and secrete HCG in culture. Hum. Reprod. 1989; 4(8, Suppl.): 87-94.
  24. Schumacher A., Brachwitz N., Sohr S., Engeland K., Langwisch S., Dolaptchieva M. et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J. Immunol. 2009; 182(9): 5488-97.
  25. Zimmermann G., Ackermann W., Alexander H. Expression and production of human chorionic gonadotropin (hCG) in the normal secretory endometrium: evidence of CGB7 and/or CGB6 beta hCG subunit gene expression. Biol. Reprod. 2012; 86(3): 87.
  26. Bourdiec A., Calvo E., Rao C.V., Akoum A. Transcriptome analysis reveals new insights into the modulation of endometrial stromal cell receptive phenotype by embryo-derived signals interleukin-1 and human chorionic gonadotropin: possible involvement in early embryo implantation. PLoS One. 2013; 8(5): e64829.
  27. Fest S., Aldo P.B., Abrahams V.M., Visintin I., Alvero A., Chen R. et al. Trophoblast-macrophage interactions: a regulatory network for the protection of pregnancy. Am. J. Reprod. Immunol. 2007; 57(1): 55-66.
  28. Saito S., Nakashima A., Shima T., Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 2010; 63(6): 601-10.
  29. Mor G., Cardenas I., Abrahams V., Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011; 1221: 80-7.
  30. Bystry R.S., Aluvihare V., Welch K.A., Kallikourdis M., Betz A.G. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2001; 2(12): 1126-32.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies