Association of cumulus cell gene expression with embryological indicators in assisted reproductive technology programs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To search for molecular genetic markers to assess the quality of oocytes and embryos with a high potential for development in order to enhance the efficiency of infertility treatment using assisted reproductive technologies. Subjects and methods. The investigation analyzed 89 cumulus cell samples from 39 patients who had undergone an in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) program. In terms of their quality, the obtained embryos were divided into 3 groups according to morphological quality assessment: 1) good-quality embryos (51 samples); 2) satisfactory-quality embryos (n = 19); 3) poor-quality embryos (n = 19). Real-time RT-PCR was used to estimate the cumulus cell mRNA expression in 7 genes: hyaluronan synthase 2 (HAS2), prostaglandin synthase 2 (PTFS2), gremlin 1 (GREM1), versican (VCAN), amphiregulin (AREG), inositol-triphosphate 3-kinase A (ITPKA), and activated leukocyte cell adhesion molecules (ALCAM or CD166). Results. A relationship was found between the expression levels of the CD 166 (ALCAM) gene and the indicators of embryo quality. This relationship was revealed when comparing good- and poor-quality embryos (p = 0.008). At the same time, there were no statistically significant differences between the quality of transferred embryos and the rate of clinical pregnancy (p = 0.856). Conclusion. The ALCAM gene may be a potential predictor for assessing the quality of embryos according to the morphological assessment criteria. Further investigation of the cumulus cell gene expression will assist in identifying potential biomarkers to assess the quality of oocytes and embryos and thus it will be able to further optimize the choice of transferred embryos and so to enhance the efficiency of IVF programs as a whole.

Full Text

Restricted Access

About the authors

Natalia Aleksandrovna Safronova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: safrochik900@bk.ru
M.D., postgraduate of the department of assisted reproductive technology in infertility treatment

Elena Anatolievna Kalinina

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: e_kalinina@oparina4.ru
M.D, Ph.D, The Head of the department of assisted reproductive technology in infertility treatment

Andrew Evgenievich Donnikov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: a_donnikov@oparina4.ru
PhD, Senior Researcher of molecular-genetical laboratory

Olga Vladimirovna Burmenskaya

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: o_bourmenskaya@oparina4.ru
Ph.D., Researcher of molecular-genetical laboratory

Natalia Petrovna Makarova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: np.makarova@gmail.com
PhD, Researcher of the department of assisted reproductive technology in infertility treatment

Anastasia Valerievna Zobova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: zoana20ll@gmail.com
PhD, Researcher of the department of assisted reproductive technology in infertility treatment

Kamila Ullubievna Alieva

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: k_alieva@oparina4.ru
PhD, Researcher of the department of assisted reproductive technology in infertility treatment

Victoria Konstantinovna Gorshinova

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: chiasma@mail.ru
M.D., postgraduate of the department of assisted reproductive technology in infertility treatment

Dmitrii Yurievich Trofimov

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

Email: d_trofimov@oparina4.ru
Ph.D., The Head of molecular-genetical laboratory

Gennadii Tikhonovich Sukhikh

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia

MD, PhD, Director

References

  1. Gearhart J., Coutifaris C. In vitro fertilization, the Nobel Prize, and human embryonic stem cells. Cell Stem Cell. 2011; 8(1): 12-5.
  2. HFEA. Fertility Facts and Figures 2008. Hum. Fertil. Embryol. Auth.; 2010.
  3. Эбзеева М.В., Калинина Е.А., Кузьмичев Л.Н. Современные подходы к стимуляции суперовуляции в программах ВРТ. Проблемы репродукции. 2009; 16(4): 47-9. [Ebzeeva M.V., Kalinina E.A., Kuzmichev L.N. Modern approaches to superovulation in assisted reproduction programs. Problemyi reproduktsii. 2009; 16(4): 47-9. (in Russian)]
  4. Калинина Е.А., Донников А.Е., Владимирова И.В. Молекулярно-генетические предикторы овариального ответа, качества ооцитов и эмбрионов в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2015; 3: 21-5. [Kalinina E.A., Donnikov A.E., Vladimirova I.V. Molecular genetic predictors of ovarian response, oocyte and embryo qualities in assisted reproductive technology programs. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2015; (3): 21-5. (in Russian)]
  5. Смольникова В.Ю., Калинина Е.А., Краснощока О.Е., Донников А.Е., Бурменская О.В., Трофимов Д.Ю., Сухих Г.Т. Возможности неинвазивной оценки состояния ооцита и эмбриона при проведении программ ВРТ по профилю экспрессии мРНК факторов роста в фолликулярной жидкости. Акушерство и гинекология. 2014; 9: 36-43. [Smolnikova V.Yu., Kalinina E.A., Krasnoshchoka O.E., Donnikov A.E., Burmenskaya O.E., Trofimov D.Yu., Sukhikh G.T. Possibilities for noninvasive oocyte and embryo evaluation when implementing assisted reproductive technology programs for follicular-fluid growth factor mRNA expression. Akusherstvo i ginekologiya/ Obstetrics and Gynecology. 2014; (9): 36-43. (in Russian)]
  6. Bromer J.G., Seli E. Assessment of embryo viability in assisted reproductive technology: shortcomings of current approaches and the emerging role of metabolomics. Curr. Opin. Obstet. Gynecol. 2008; 20(3): 234-41.
  7. Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008; 14(2): 159-77.
  8. Albertini D.F., Combelles C.M., Benecchi E., Carabatsos M.J. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001; 121(5): 647-53.
  9. Knight P.G., Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006; 132(2): 191-206.
  10. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology.The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 2011; 26(6): 1270-83.
  11. Adriaenssens T., Segers I., Wathlet S., Smitz J. The cumulus cell gene expression profile of oocytes with different nuclear maturity and potential for blastocyst formation. J. Assist. Reprod. Genet. 2011; 28(1): 31-40.
  12. Alfarawati S., Fragouli E., Colls P., Stevens J., Gutiérrez-Mateo C., Schoolcraft W.B. et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil. Steril. 2011; 95(2): 520-4.
  13. Громенко Ю.Ю., Исхаков И.Р. Влияние факторов оценки качества перенесенных эмбрионов на прогнозирование частоты наступления беременности в программах экстракорпорального оплодотворения. Медицинский вестник Башкортостана. 2012; 7(2): 27-30. [Gromenko Yu.Yu., Ishakov I.R. The impact of quality assessment factors in the prediction of the transferred embryo pregnancy rate in in vitro fertilization programs. Meditsinskiy vestnik Bashkortostana. 2012; 7(2): 27-30. (in Russian)]
  14. Binelli M., Murphy B.D. Coordinated regulation of follicle development by germ and somatic cells. Reprod. Fertil. Dev. 2010; 22(1): 1-12.
  15. Huang Z., Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 2010; 16(10): 715-25.
  16. Kulasingam V., Zheng Y., Soosaipillai A., Leon A.E., Gion M., Diamandis E.P. Activated leukocyte cell adhesion molecule: a novel biomarker for breast cancer. Int. J. Cancer. 2009; 125(1): 9-14.
  17. Hernandez-Gonzalez I., Gonzalez-Robayna I., Shimada M., Wayne C.M., Ochsner S.A., White L., Richards J.S. Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process? Mol. Endocrinol. 2006; 20(6): 1300-21.
  18. Jin R., Yang G., Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 2010; 87(5): 779-89.
  19. Matsumoto H., Ma W.G., Daikoku T., Zhao X., Paria B.C., Das S.K. et al. Cyclooxygenase-2 differentially directs uterine angiogenesis during implantation in mice. J. Biol. Chem. 2002; 277(32): 29260-7.
  20. Wathlet S., Adriaenssens T., Segers I., Verheyen G., Van de Velde H., Coucke W. et al. Cumulus cell gene expression predicts better cleavage-stage embryo or blastocyst development and pregnancy for ICSI patients. Hum. Reprod. 2011; 26(5): 1035-51.
  21. Zamah A.M., Hsieh M., Chen J., Vigne J.L., Rosen M.P., Cedars M.I., Conti M. Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum. Reprod. 2010; 25(10): 2569-78.
  22. Peng X.R., Hsueh A.J., LaPolt P.S., Bjersing L., Ny T. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology. 1991; 129(6): 3200-7.
  23. Li Q., Jimenez-Krassel F., Ireland J.J., Smith G.W.Gene expression profiling of bovine preovulatory follicles: gonadotropin surge and prostanoid-dependent up-regulation of genes potentially linked to the ovulatory process. Reproduction. 2009; 137(2): 297-307.
  24. Jamnongjit M., Gill A., Hammes S.R. Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc. Natl. Acad. Sci. USA. 2005; 102(45): 16257-62.
  25. Shimada M., Hernandez-Gonzalez I., Gonzalez-Robayna I., Richards J.S. Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: key roles for prostaglandin synthase 2 and progesterone receptor. Mol. Endocrinol. 2006; 20(6): 1352-65.
  26. Arosh J.A., Banu S.K., Chapdelaine P., Fortier M.A. Temporal and tissue-specific expression of prostaglandin receptors EP2, EP3, EP4, FP, and cyclooxygenases 1 and 2 in uterus and fetal membranes during bovine pregnancy. Endocrinology. 2004; 145(1): 407-17.
  27. McKenzie L.J., Pangas S.A., Carson S.A., Kovanci E., Cisneros P., Buster J.E. et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 2004; 19(12): 2869-74.
  28. Feuerstein P., Cadoret V., Dalbies-Tran R., Guerif F., Bidault R., Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum. Reprod. 2007; 22(12): 3069-77.
  29. Marei W.F.A., Salavati M., Fouladi-Nashta A.A. Critical role of hyaluronidase-2 during preimplantation embryo development. Mol. Hum. Reprod. 2013; 19(9): 590-9.
  30. Alaniz L., Rizzo M., Garcia M.G., Piccioni F., Aquino J.B., Malvicini M. et al. Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma. Cancer Immunol. Immunother. 2011; 60(10): 1383-95.
  31. Zhang X., Jafari N., Barnes R.B., Confino E., Milad M., Kazer R.R. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil. Steril. 2005; 83(Suppl. 1): 1169-79.
  32. Sathyan S., Koshy L.V., Balan S., Easwer H.V., Premkumar S., Nair S. et al. Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene. 2014; 2: 651-60.
  33. LaPierre D.P., Lee D.Y., Li S.Z., Xie Y.Z., Zhong L., Sheng W. et al. The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res. 2007; 67(10): 4742-50.
  34. Pangas S.A., Jorgez C.J., Matzuk M.M. Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J. Biol. Chem. 2004; 279(31): 32281-6.
  35. Anderson R.A., Sciorio R., Kinnell H., Bayne R.A., Thong K.J., de Sousa P.A., Pickering S. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009; 138(4): 629-37.
  36. Prevarskaya N., Skryma R., Shuba Y. Calcium in tumour metastasis: new roles for known actors. Nat. Rev. Cancer. 2011; 11(8): 609-18.
  37. Cillo F., Brevini T.A., Antonini S., Paffoni A., Ragni G., Gandolfi F. Association between human oocyte developmental and expression levels of some cumulus genes. Reproduction. 2007; 134(5): 645-50.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies