The role of chromosomal abnormalities in fetal congenital heart defects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: The objective of this study was to investigate the frequency of chromosomal abnormalities in various nosological forms of fetal congenital heart defects (CHDs).

Materials and methods: The study included 72 pregnant women who received a prenatal diagnosis of fetal CHD. Between 15 and 30 weeks of pregnancy, the women underwent invasive prenatal diagnostic procedures. Fetal DNA testing was performed in two stages. The first stage was detection of abnormalities in chromosomes 13, 18, 21, X, and Y using polymerase chain reaction analysis of short-tandem repeat (STR) markers (STR-PCR). The second stage was chromosomal microarray analysis (CMA).

Results: Among 72 women, congenital heart defects were found in combination with chromosomal abnormalities in 16 сases (22.2% of total cases). Of them, trisomy 21 was identified in 4 cases (5.6%), trisomy 18 in 2 cases (2.8%), microdeletion from chromosome 22 in 8 cases (11.1%), microdeletion from chromosome 12 in 1 case (1.4%), microdeletion from chromosome 1 in 1 case (1.4%). Additionally, aneuploidies were detected in 6 cases (8.3%) using quantitative fluorescent polymerase chain reaction (QF-PCR), and all copy number variations were confirmed by chromosomal microarray analysis (CMA) in 10 cases (13.9%).

Conclusion: The study found that fetal congenital heart defects were associated with chromosomal abnormalities in 22% of cases (in 16 cases out of 72). The majority of abnormalities were related to pathogenic gene copy number variants in 62.5% of cases (in 10 cases out of 16). Based on the findings, the preferred invasive method of prenatal diagnostics should be considered to be chromosomal microarray analysis, as it provides comprehensive genetic information.

Full Text

Restricted Access

About the authors

Viсtoriia S. Pak

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: v_pak@oparina4.ru
ORCID iD: 0009-0002-1444-9071

post-graduate student

Russian Federation, Moscow

Nana K. Tetruashvili

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_tetruashvili@oparina4.ru
ORCID iD: 0000-0002-9201-2281

PhD, Head of the Obstetric Department of Pregnancy Pathology No. 2

Russian Federation, Moscow

Ekaterina L. Bokeriya

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_bokeriya@oparina4.ru
ORCID iD: 0000-0002-8898-9612

PhD, Researcher at the Department of Patology of Newborn and Prematurely-Born Children No. 2

Russian Federation, Moscow

Jekaterina Shubina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: e_shubina@oparina4.ru
ORCID iD: 0000-0003-4383-7428

PhD (Bio.), Head of the Laboratory of Genomic Data Analysis

Russian Federation, Moscow

Nadezhda V. Zaretskaya

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_zaretskaya@oparina4.ru
ORCID iD: 0000-0001-6754-3833

PhD, Head of the Laboratory of Clinical Genetics of the Institute of Reproductive Genetics

Russian Federation, Moscow

Anna S. Bolshakova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_bolshakova@oparina4.ru
ORCID iD: 0000-0002-7508-0899

geneticist, Department of Clinical Genetics of the Institute of Reproductive Genetics

Russian Federation, Moscow

Daria G. Lyushnina

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: d_lyushnina@oparina4.ru
ORCID iD: 0009-0004-3160-8737

post-graduate student

Russian Federation, Moscow

Maria V. Kuznetsova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: mkarja@mail.ru
ORCID iD: 0000-0003-3790-0427

PhD (Bio.), Senior Researcher at the Laboratory of Molecular and Genetic Methods of the Institute of Reproductive Genetics

Russian Federation, Moscow

Galina V. Mikhailovskaya

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: g_mikhailovskaia@oparina4.ru

biologist at the Laboratory of Molecular and Genetic Methods of the Institute of Reproductive Genetics

Russian Federation, Moscow

Igor O. Sadelov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: a_sadelov@oparina4.ru
ORCID iD: 0000-0002-5144-6307

geneticist, Laboratory of Genomic Data Analysis

Russian Federation, Moscow

Dmitriy Yu. Trofimov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: d_trofimov@oparina4.ru
ORCID iD: 0000-0002-1569-8486

Dr. Bio. Sci., Professor of the RAS, Corresponding Member of the RAS, Director of the Institute of Reproductive Genetics

Russian Federation, Moscow

References

  1. Саперова Е.В., Вахлова И.В. Врожденные пороки сердца у детей: распространенность, факторы риска, смертность. Вопросы современной педиатрии. 2017; 16(2): 126-33. [Saperova E.V., Vakhlova I.V. Congenital heart diseases in children: incidence, risk factors, mortality. Current Pediatrics. 2017; 16(2): 126-33. (in Russian)]. https://dx.doi.org/10.15690/ vsp.v16i2.1713.
  2. Taylor K., Elhakeem A., Nader J.L.T., Yang T., Isaevska E., Richiardi L. et al. The effect of maternal pre-/early-pregnancy BMI and pregnancy smoking and alcohol on congenital heart diseases: a parental negative control study. medRxiv. 2020; 2020.09.29.20203786. https://dx.doi.org/10.1101/ 2020.09.29.20203786.
  3. Cloete E., Bloomfield F.H., Sadler L., de Laat M.W.M., Finucane A.K., Gentles T.L. Antenatal detection of treatable critical congenital heart disease is associated with lower morbidity and mortality. J. Pediatr. 2019; 204: 66-70. https://dx.doi.org/10.1016/j.jpeds.2018.08.056.
  4. Бокерия Е.Л. Перинатальная кардиология: настоящее и будущее. Часть I: врожденные пороки сердца. Российский вестник перинатологии и педиатрии. 2019; 64(3): 5-10. [Bokerija E.L. Perinatal cardiology: the present and the future. Part I: congenital heart disease. Russian Bulletin of Perinatology and Pediatrics. 2019; 64(3): 5-10. (in Russian)]. https://dx.doi.org/10.21508/ 1027-4065-2019-64-3-5-10.
  5. Министерство здравоохранения Российской Федерации, Союз педиатров России, Ассоциация детских кардиологов России. Федеральные клинические рекомендации по оказанию медицинской помощи детям с врожденными пороками сердца. М.; 2015. [Ministry of Health of the Russian Federation, Union of Pediatricians of Russia, Association of Pediatric Cardiologists of Russia. Federal clinical guidelines for providing medical care to children with congenital heart disease. Moscow; 2015. (in Russian)].
  6. Qiao F., Wang Y., Zhang C., Zhou R., Wu Y., Wang C. et al. Comprehensive evaluation of genetic variants using chromosomal microarray analysis and exome sequencing in fetuses with congenital heart defect. Ultrasound Obstet. Gynecol. 2021; 58(3): 377-87. https://dx.doi.org/10.1002/uog.23532.
  7. Botto L.D., Lin A.E., Riehle-Colarusso T., Malik S., Correa A.; National Birth Defects Prevention Study. Seeking causes: Classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res. A Clin. Mol. Teratol. 2007; 79(10): 714-27. https://dx.doi.org/10.1002/bdra.20403.
  8. Cowan J.R., Ware S.M. Genetics and genetic testing in congenital heart disease. Clin. Perinatol. 2015; 42(2): 373-93, ix. https://dx.doi.org/10.1016/ j.clp.2015.02.009.
  9. Lin A.E., Santoro S., High F.A., Goldenberg P., Gutmark-Little I. Congenital heart defects associated with aneuploidy syndromes: New insights into familiar associations. Am. J. Med. Genet. C. Semin. Med. Genet. 2020; 184(1): 53-63. https://dx.doi.org/10.1002/ajmg.c.31760.
  10. Yates A.R., Hoffman T.M., Shepherd E., Boettner B., McBride K.L. Pediatric sub-specialist controversies in the treatment of congenital heart disease in trisomy 13 or 18. J. Genet. Couns. 2011; 20(5): 495-509. https://dx.doi.org/10.1007/s10897-011-9373-x.
  11. Dimopoulos K., Constantine A., Clift P., Condliffe R., Moledina S., Jansen K. et al. Cardiovascular complications of down syndrome: scoping review and expert consensus. Circulation. 2023; 147(5): 425-41. https://dx.doi.org/10.1161/CIRCULATIONAHA.122.059706.
  12. Huang A.C., Olson S.B., Maslen C.L. A review of recent developments in turner syndrome research. J. Cardiovasc. Dev. Dis. 2021; 8(11): 138. https://dx.doi.org/10.3390/jcdd8110138.
  13. Lee M.Y., Won H.S., Baek J.W., Cho J.H., Shim J.Y., Lee P.R. et al. Variety of prenatally diagnosed congenital heart disease in 22q11.2 deletion syndrome. Obstet. Gynecol. Sci. 2014; 57(1): 11-6. https://dx.doi.org/10.5468/ogs.2014.57.1.11.
  14. Wang H., Lin X., Lyu G., He S., Dong B., Yang Y. Chromosomal abnormalities in fetuses with congenital heart disease: a meta-analysis. Arch. Gynecol. Obstet. 2023; 308(3): 797-811. https://dx.doi.org/10.1007/s00404-023-06910-3.
  15. Mone F., Eberhardt R.Y., Morris R.K., Hurles M.E., McMullan D.J., Maher E.R. et al. Congenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review. Ultrasound Obstet. Gynecol. 2021; 57(1) :43-51. https://dx.doi.org/10.1002/ uog.22072.
  16. Баранов В.С., Кузнецова Т.В. Новые возможности генетической пренатальной диагностики. Журнал акушерства и женских болезней. 2015; 64(2): 4-12. [Baranov V.S., Kuznetzova T.V. Novel options in Prenatal Genetic Diagnostic. Journal of Obstetrics and Women's Diseases. 2015; 64(2): 4-12. (in Russian)]. https://dx.doi.org/10.17816|/JOWD6424-12.
  17. Нагорнева С.В., Прохорова В.С., Шелаева Е.В., Худовекова А.М. Анализ частоты выявления врожденных пороков развития у плодов за последние 5 лет (2013-2017). Журнал акушерства и женских болезней. 2018; 67(3): 44-8. [Nagorneva S.V., Prokhorova V.S., Shelaeva E.V., Khudovecova A.M. The prevalence of congenital fetal anomalies for the past 5 years (2013-2017). Journal of Obstetrics and Women's Diseases. 2018; 67(3): 44-8. (in Russian)]. https://dx.doi.org/10.17816/JOWD67344-48.
  18. https://acmgen.org/wp-content/uploads/2019/11/Tech.
  19. Pierpont M.E., Brueckner M., Chung W.K., Garg V., Lacro R.V., McGuire A.L. et al. Genetic basis for congenital heart disease: Revisited: a scientific statement from the American Heart Association. Circulation. 2018; 138(21): e653-711. https://dx.doi.org/10.1161/CIR.0000000000000606.
  20. Asim A., Agarwal S. Congenital heart defects among Down’s syndrome cases: an updated review from basic research to an emerging diagnostics technology and genetic counselling. J. Genet. 2021; 100: 45.
  21. Mollo N., Scognamiglio R., Conti A., Paladino S., Nitsch L., Izzo A. Genetics and molecular basis of congenital heart defects in Down syndrome: role of extracellular matrix regulation. Int. J. Mol. Sci. 2023; 24(3): 2918. https://dx.doi.org/10.3390/ijms24032918.
  22. Kloesel B., DiNardo J.A., Body S.C. Cardiac embryology and molecular mechanisms of congenital heart disease: a primer for anesthesiologists. Anesth. Analg. 2016; 123(3): 551-69. https:/dx./doi.org/10.1213/ANE.0000000000001451.
  23. Ярыгина Т.А., Гасанова Р.М., Большакова А.С., Марзоева О.В., Сыпченко Е.В., Гус А.И. Кардиальная патология в случаях монозиготных двоен с синдромом делеции хромоcомы 22 (22q11DS). Акушерство и гинекология. 2022; 6: 140-51. [Yarygina T.A., Gasanova R.M., Bolshakova A.S., Marzoeva O.V., Sypchenko E.V., Gus A.I. Cardiac pathology in cases of monozygotic twins with chromosome 22 deletion syndrome (22q11DS). Obstetrics and Gynecology. 2022; (6): 140-51. (in Russian)]. https://dx.doi.org/10.18565/ aig.2022.6.140-151.
  24. Goldmuntz E. 22q11.2 deletion syndrome and congenital heart disease. Am. J. Med. Genet. C. Semin. Med. Genet. 2020; 184(1):64-72. https://doi.org/ 10.1002/ajmg.c.31774.
  25. Винокурова Е.А., Скрябин Е.Г., Белов В.П. Возможности современной пренатальной диагностики микроделеционного синдрома 22q11.2 (синдрома Ди Джорджи). Российский вестник акушера-гинеколога. 2022; 22(4):39-46. [Vinokurova E.A., Skryabin E.G., Belov V.P. Possibilities of modern prenatal diagnosis of microdeletion syndrome 22q11.2 (DiGeorge syndrome). Russian Bulletin of Obstetrician-Gynecologist. 2022;22(4):39-46. (in Russian)]. https://doi.org/10.17116/rosakush20222204139.
  26. Óskarsdóttir S., Boot E., Crowley T.B., Loo J.C.Y., Arganbright J.M., Armando M. et al. Updated clinical practice recommendations for managing children with 22q11.2 deletion syndrome. Genet. Med. 2023; 25(3):100338. https://doi.org/10.1016/j.gim.2022.11.006.
  27. Biggs S.E., Gilchrist B., May K.R. Chromosome 22q11.2 deletion (DiGeorge Syndrome): immunologic features, diagnosis, and management. Curr. Allergy Asthma Rep. 2023; 23(4):213-22. https://doi.org/10.1007/ s11882-023-01071-4.
  28. Boyarchuk O., Volyanska L., Dmytrash L. Clinical variability of chromosome 22q11.2 deletion syndrome. Cent. Eur. J. Immunol. 2017; 42(4):412-7. https://doi.org/10.5114/ceji.2017.72818.
  29. Brenner M.K., Clarke S., Mahnke D.K., Simpson P., Bercovitz R.S., Tomita-Mitchell A. et al. Effect of 22q11.2 deletion on bleeding and transfusion utilization in children with congenital heart disease undergoing cardiac surgery. Pediatr. Res. 2016; 79(2):318-24. https://doi.org/10.1038/ pr.2015.216.
  30. Maggadottir S.M., Sullivan K.E. The diverse clinical features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome). J. Allergy Clin. Immunol. Pract. 2013; 1(6):589-94. https://doi.org/10.1016/ j.jaip.2013.08.003.
  31. Mustafa H.J., Jacobs K.M., Tessier K.M., Narasimhan S.L., Tofte A.N., McCarter A.R. et al. Chromosomal microarray analysis in the investigation of prenatally diagnosed congenital heart disease. Am. J. Obstet. Gynecol. MFM. 2020; 2(1):100078. https://doi.org/10.1016/ j.ajogmf.2019.100078.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Study design

Download (162KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies