Balance of pro-inflammatory and anti-inflammatory cytokines of fetal membranes of patients with prelabor rupture of membranes at term

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Objective: To investigate the mRNA expression levels of pro-inflammatory (IL-1β, IL-6, IL-8, IL-17A, IL-18, IL-23, TNF-α, and IFN-γ) and anti-inflammatory (IL-4, IL-10, TGFβ) cytokines in the membranes of patients with prelabor rupture of membranes at term (PROM).

Materials and methods: During a clinical study at the Samara State Medical University, 40 pregnant women with full-term pregnancies were studied. The inclusion criteria were singleton pregnancy, gestational age 37.0-41.0 weeks without non-obstetric comorbidities, exacerbation of chronic and acute inflammatory diseases, and obstetric complications (placental insufficiency, preeclampsia). All patients delivered via cesarean section. Indications for planned surgery were abnormal fetal position and presentation, and postoperative uterine scar (control group, n=16). An additional indication for emergency cesarean section was premature rupture of the membranes (study group, n=24). The mRNA expression levels of IL-1β, IL-6, IL-8, IL-17A, IL-18, IL-23, TNFα, IFN-γ, IL-4, IL-10, and TGF-β were determined using RT-PCR (RT-PCR DNA technology).

Results: Expression of the mRNA genes IL-1β, IL-8, IL-18, and TNFα was observed in almost all subjects in both groups. The expression of IL-17 mRNA was not determined in any patient; IL-23 – in 7/24 (29.2%) of the study group and 3/16 (18.8%) of the control group; IL-4 expression – in 5/24 (20.8%) and 4/16 (25.0%), respectively, at an extremely low level. Expression of IL-6 and IFN-γ mRNA genes was observed slightly more often in 16/24 (66.7%) and 17/24 (70.8%) patients in the study group and in 6/16 (37.5%) and 7/16 (43.7%) patients in the control group. Significant differences between the groups were observed only for the expression of IL-8 gene mRNA – 105.44 (23.7; 648.93) RU and 33.49 (20.0; 116.6) RU and TGFβ – 216.63 (129.5; 329.9) RU and 112.5 (36.7; 182.4) RU in the study group and control group, respectively.

Conclusion: In patients with PROM, the main changes in the fetal membranes are a 3.1-fold increase in the expression of the IL-8 gene mRNA, which ensures the migration of immunocompetent cells (p=0.022), and a 1.9-fold increase in the expression of the TGFβ gene mRNA, which is responsible for epithelial-mesenchymal transition and thinning of the fetal membranes (p=0.024),

全文:

受限制的访问

作者简介

Maria Kaganova

Samara State Medical University, Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: mkaganova@yandex.ru
ORCID iD: 0000-0001-5879-418X

PhD, Associate Professor at the Department of Obstetrics and Gynecology

俄罗斯联邦, Samara

Natalia Spiridonova

Samara State Medical University, Ministry of Health of the Russian Federation

Email: nvspiridonova@mail.ru
ORCID iD: 0000-0003-3390-8034

Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology, Institute of Vocational Education

俄罗斯联邦, Samara

参考

  1. Menon R., Moore J.J. Fetal membranes, not a mere appendage of the placenta, but a critical part of the fetal-maternal interface controlling parturition. Obstet. Gynecol. Clin. North Am. 2020; 47(1): 147-62. https://dx.doi.org/10.1016/ j.ogc.2019.10.004.
  2. Болотских В.М., Айламазян Э.К., ред. Преждевременное излитие околоплодных вод: теория и практика. Санкт-Петербург: Эко-Вектор; 2018. 191с. [Bolotskikh V.M., Ajlamazjan Je.K., eds. Premature discharge of amniotic fluid: theory and practice. St Petersburg: Eco-Vector; 2018. 191p. (in Russian)].
  3. Доброхотова Ю.Э., Трофимов Д.Ю., Щеголев А.И., Бурменская О.В., Веселовская Ю.С., Митрофанова Ю.В., Оленев А.С., Пастарнак А.Ю., Гогичаев Т.К. Особенности экспрессии мРНК гена прогестерониндуцированного блокирующего фактора в плаценте при преждевременных родах. Акушерство и гинекология. 2017; 7: 62-7. [Dobrokhotova Yu.E., Trofimov D.Yu., Shchegolev A.I., Burmenskaya O.V., Veselovskaya Yu.S., Mitrofanova Yu.V., Olenev A.S., Pastarnak A.Yu., Gogichaev T.K. Placental PIBF1 gene mRNA expression during preterm labor. Obstetrics and Gynecology. 2017; (7): 62-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.7.62-7.
  4. Доброхотова Ю.Э., Бондаренко К.Р., Гущин А.Е., Румянцева Т.А., Долгова Т.В., Кузнецов П.А., Джохадзе Л.С. Результаты исследования цервико-вагинальной микробиоты методом ПЦР в реальном времени у беременных с угрожающими преждевременными родами. Акушерство и гинекология. 2018; 11: 50-9. [Dobrokhotova Yu.E., Bondarenko K.R., Gushchin A.E., Rumyantseva T.A., Dolgova T.V., Kuznetsov P.A., Dzhokhadze L.S. The results of the examination of cervical-vaginal microbiota in pregnant women with threatened preterm birth using a real-time polymerase chain reaction. Obstetrics and Gynecology. 2018; (11): 50-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.11.50-59.
  5. Oh K.J., Romero R., Park J.Y., Lee J., Conde-Agudelo A., Hong J.S., Yoon B.H. Evidence that antibiotic administration is effective in the treatment of a subset of patients with intra-amniotic infection/inflammation presenting with cervical insufficiency. Am. J. Obstet. Gynecol. 2019; 221(2): 140.e1-140.e18. https://dx.doi.org/10.1016/j.ajog.2019.03.017.
  6. Tchirikov M., Schlabritz-Loutsevitch N., Maher J., Buchmann J., Naberezhnev Y., Winarno A.S., Seliger G. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J. Perinat. Med. 2018; 46(5): 465-88. https://dx.doi.org/10.1515/jpm-2017-0027.
  7. Низяева Н.В., Карапетян А.О., Гапаева М.Д., Приходько А.М., Синицына В.А., Баев О.Р. Повышение ангиогенеза как фактора, способствующего разрыву плодных оболочек при физиологическом течении беременности и при преждевременных родах. Гены и клетки. 2019; 14(3): 164-5. [Nizyaeva N.V., Karapetyan A.O., Gapaeva M.D., Prikhod'ko A.M., Sinitsyna V.A., Baev O.R. Povyshenie angiogeneza kak faktora, sposobstvuyushchego razryvu plodnykh obolochek pri fiziologicheskom techenii beremennosti i pri prezhdevremennykh rodakh. Genes & Cells. 2019; 14(3): 164-5. (in Russian)]. https://dx.doi.org/10.23868/gc123216.
  8. Hadley E.E., Sheller-Miller S., Saade G., Salomon C., Mesiano S., Taylor R.N., Taylor B.D., Menon R. Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am. J. Obstet. Gynecol. 2018; 219(5): 478.e1-478.e21. https://dx.doi.org/10.1016/j.ajog.2018.08.021.
  9. Николаева А.М., Бабушкина Н.П., Рябов В.В. Некоторые про- и противовоспалительные цитокины, полиморфные варианты их генов и постинфарктное ремоделирование сердца. Российский кардиологический журнал. 2020; 25(10): 4007. [Nikolaeva A.M., Babushkina N.P., Ryabov V.V. Some pro- and anti-inflammatory cytokines, their genetic polymorphism and postinfarct cardiac remodeling. Russian Journal of Cardiology. 2020; 25(10): 4007. (in Russian)]. https://dx.doi.org/10.15829/1560-4071-2020-4007.
  10. Zakar T., Paul J.W. Fetal membrane epigenetics. Front. Physiol. 2020; 11: 588539. https://dx.doi.org/10.3389/fphys.2020.588539.
  11. Janzen C., Sen S., Lei M.Y., Gagliardi de Assumpcao M., Challis J., Chaudhuri G. The role of epithelial to mesenchymal transition in human amniotic membrane rupture. J. Clin. Endocrinol. Metab. 2017; 102(4): 1261-9. https://dx.doi.org/ 10.1210/jc.2016-3150.
  12. Richardson L.S., Taylor R.N., Menon R. Reversible EMT and MET mediate amnion remodeling during pregnancy and labor. Sci. Signal. 2020; 13(618): eaay1486. https://dx.doi.org/10.1126/scisignal.aay1486.
  13. Sharma A., Kumar D., Moore R.M., Deshmukh A., Mercer B.M., Mansour J.M., Moore J.J. Granulocyte macrophage colony stimulating factor (GM-CSF), the critical intermediate of inflammation-induced fetal membrane weakening, primarily exerts its weakening effect on the choriodecidua rather than the amnion. Placenta. 2020; 89: 1-7. https://dx.doi.org/10.1016/ j.placenta.2019.10.003.
  14. Murray E.J., Gumusoglu S.B., Santillan D.A., Santillan M.K. Manipulating CD4+ T cell pathways to prevent preeclampsia. Front. Bioeng. Biotechnol. 2022; 9: 811417. https://dx.doi.org/10.3389/fbioe.2021.811417.
  15. Piccinni M.P., Raghupathy R., Saito S., Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front. Immunol. 2021; 12: 717808. https://dx.doi.org/10.3389/fimmu.2021.717808.
  16. Motedayyen H., Fathi F., Fasihi-Ramandi M., Ali Taheri R. The effect of lipopolysaccharide on anti-inflammatory and pro-inflammatory cytokines production of human amniotic epithelial cells. Reprod. Biol. 2018; 18(4): 404-9. https://dx.doi.org/10.1016/j.repbio.2018.09.005.
  17. Zhu J., Ma C., Zhu L., Li J., Peng F., Huang L., Luan X. A role for the NLRC4 inflammasome in premature rupture of membrane. PLoS One. 2020; 15(8): e0237847. https://dx.doi.org/10.1371/journal.pone.0237847.

补充文件

附件文件
动作
1. JATS XML
##common.cookie##