Physical-mathematical modeling of multiyear dynamics of water-balance and snow-reserve components in Ob-Irtysh river basin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The possibility of use of the previously developed calculation technique of the North Rivers flow hydraulic records for the Ob River, the largest river in Russia by basin area, flowing under severe conditions in West Siberia was examined. The calculation technique is based on the model of heat and moisture exchange of the geological substrate with the Earth’s atmosphere, the Soil−Water–Atmosphere–Plants (SWAP) model, in conjunction with information support based on global databases of geological-substrate parameters and information obtained from observational data collected by weather stations within the Ob River basin. Uncertainty of the Ob River flow was assessed. Additionally, the ability of the SWAP model to reproduce multiyear dynamics from average values of snow reserves in the Ob-Irtysh basin was examined.

Full Text

Restricted Access

About the authors

E. M. Gusev

Water Problems Institute of the Russian Academy of Sciences

Author for correspondence.
Email: sowaso@yandex.ru
Russian Federation, Moscow

O. N. Nasonova

Water Problems Institute of the Russian Academy of Sciences

Email: sowaso@yandex.ru
Russian Federation, Moscow

E. A. Shkurko

Water Problems Institute of the Russian Academy of Sciences

Email: sowaso@yandex.ru
Russian Federation, Moscow

L. Ya. Dzhogan

Water Problems Institute of the Russian Academy of Sciences

Email: sowaso@yandex.ru
Russian Federation, Moscow

G. V. Ayzel

Water Problems Institute of the Russian Academy of Sciences

Email: sowaso@yandex.ru
Russian Federation, Moscow

References

  1. Гусев Е.М., Насонова О.Н. Методика сценарного прогнозирования изменения составляющих водного баланса северных речных бассейнов в связи с возможным изменением климата // Вод. ресурсы. 2013. Т. 40. № 4. С. 396–411.
  2. Гусев Е.М., Насонова О.Н. Моделирование процессов тепловлагообмена суши с атмосферой в локальном масштабе для территорий с многолетней мерзлотой // Почвоведение. 2004. № 9. С. 1077–1092.
  3. Гусев Е.М., Насонова О.Н. Моделирование тепло- и влагообмена поверхности суши с атмосферой. М.: Наука, 2010. 328 с.
  4. Гусев Е.М., Насонова О.Н. Параметризация тепло- и влагообмена на поверхности суши при сопряжении гидрологических и климатических моделей // Вод. ресурсы. 1998. Т. 25. № 4. С. 421–431.
  5. Гусев Е.М., Насонова О.Н., Джоган Л.Я. Воспроизведение гидрографов стока р. Печоры на основе модели тепловлагообмена подстилающей поверхности суши с атмосферой SWAP // Вод. ресурсы. 2010. Т. 37. № 2. С. 186–198.
  6. Гусев Е.М., Насонова О.Н., Джоган Л.Я. Моделирование стока рек северо-западной части России с использованием модели взаимодействия поверхности суши с атмосферой SWAP // Вестн. РФФИ. 2013. № 6 (78). С. 17–23.
  7. Гусев Е.М., Насонова О.Н., Джоган Л.Я. Сценарное прогнозирование изменения составляющих водного баланса в бассейне р. Лены в связи с возможным изменением климата // Вод. ресурсы. 2016. Т. 43. № 5. С. 476–487.
  8. Гусев Е.М., Насонова О.Н., Джоган Л.Я. Физико-математическое моделирование многолетней динамики суточных значений речного стока и снегозапасов в бассейне р. Лены // Вод. ресурсы. 2016. Т. 43. № 1. С. 24–36.
  9. Гусев Е.М., Насонова О.Н., Джоган Л.Я., Айзель Г.В. Моделирование стока рек Оленек и Индигирка и использование модели взаимодействия поверхности суши с атмосферой SWAP // Вод. ресурсы. 2013. Т. 40. № 5. С. 496–506.
  10. Гусев Е.М., Насонова О.Н., Джоган Л.Я., Айзель Г.В. Сценарное прогнозирование изменения составляющих водного баланса рек Оленек и Индигирка в связи с возможным изменением климата в районе Республики Саха (Якутии) // Вод. ресурсы. 2014. Т. 41. № 6. С. 621–636.
  11. Гусев Е.М., Насонова О.Н., Джоган Л.Я., Ковалев Е.Э. Использование модели взаимодействия подстилающей поверхности суши с атмосферой для расчетов речного стока в высоких широтах // Вод. ресурсы. 2008. Т. 35. № 2. С. 181–195.
  12. Гусев Е.М., Насонова О.Н., Джоган Л.Я., Ковалев Е.Э. Моделирование стока р. Северной Двины с использованием модели взаимодействия поверхности суши с атмосферой SWAP и глобальных баз данных // Вод. ресурсы. 2011. Т. 38. № 4. С. 439–453.
  13. Гусев Е.М., Насонова О.Н., Ковалев Е.E. Моделирование составляющих теплового и водного балансов поверхности суши Земного шара // Вод. ресурсы. 2006. Т. 33. № 6. С. 664–676.
  14. Гусев Е.М., Насонова О.Н., Ковалев Е.Э., Семенов В.A. Неопределенность расчетов и прогнозов составляющих водного баланса речных бассейнов, вызванная климатическим шумом // “Научное обеспечение реализации “Водной стратегии Российской Федерации на период до 2020 г.”. Сб. науч. тр. Т. 1. Петрозаводск: КарНЦ РАН, 2015. С. 128–134.
  15. Реки и озера мира: энциклопедия. М.: Энциклопедия, 2012. 924 С.
  16. Рыбальский Н.Г., Омельяненко В.А., Думнов А.Д., Муравьева Е.В., Мирошниченко Н.А., Самотесов Е.Д., Борискин Д.А. Государственный доклад “О состоянии и использовании водных ресурсов Российской Федерации в 2012 году”. М.: НИА-Природа, 2013. 370 с.
  17. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D., Mahanama S., Mitchell K., Nasonova O., Niu G.-Y., Pitman A., Polcher J., Shmakin A.B., Tanaka K., van den Hurk B., Verant S., Verseghy D., Viterbo P., Yang Z.-L. The Rhone-aggregation land surface scheme intercomparison project: An overview // J. Climate. 2004. V. 17. P. 187–208.
  18. Dirmeyer P., Gao X., Oki T. The Second Global Soil Wetness Project. Science and Implementation Plan // IGPO Publ. Series. Silver Spring: Int. GEWEX Project Office, 2002. № 37. 75 p.
  19. Duan Q., Sorooshian S., Gupta V.K. Effective and efficient global optimization for conceptual rainfall runoff models // Water Resour. Res. 1992. V. 28. № 4. P. 1015–1031.
  20. Gelfan A., Semenov V.A., Gusev E., Motovilov Y., Nasonova O., Krylenko I., Kovalev, E. Large-basin hydrological response to climate model outputs: uncertainty caused by the internal atmospheric variability // Hydrol. Earth Syst. Sci., 2015. № 19. P. 2737–2754. 2015 www.hydrol-earth-syst-sci.net/19/2737/2015/.
  21. Gusev Ye.M., Nasonova O.N. Parameter Optimization for Simulating Runoff from Highlatitude River Basins Using Land Surface Model and Global Data Sets // Stochastic Optimization — Seeing the Optimal for the Uncertain / Ed. Ioannis Dritsas. Rijeka, (Croatia): InTech., 2011. P. 413–440.
  22. Gusev E.M., Nasonova O.N., Dzhogan L.Ya. Modeling River Runoff in Northwestern Russia with the Use of Land Surface Model SWAP and Global Databases // Water Resour. 2011. V. 38. № 5. P. 571–582.
  23. Gusev Ye.M., Nasonova O.N., Dzhogan L.Ya., Kovalev E.E. Scenario forecasting changes in the water balance components of the Olenek and Iindigirka river basins due to possible climate change // Proc. IAHS. 2015. № 371. P. 13–15.
  24. Kanae S., Nishio K., Oki T., Musiake K. Hydrograph estimations by flow routing modeling from AGCM output in major basins of the world // Ann. J. Hydraulic Eng. 1995. V. 39. P. 97–102.
  25. Liang X., Lettenmaier D.P., Wood E.F., Burges S.J. A Simple hydrologically based model of land surface water and energy fluxes for general circulation models // J. Geophys. Res. 1994. V. 99 (D7). P. 14415 –14428.
  26. Lohmann D., Lettenmaier D.P., Liang X., Wood E.F., Boone A., Chang S., Chen F., Dai Y., Desborough C., Dickinson R.E., Duan Q., Ek M., Gusev Ye.M., Habets F., Irannejad P., Koster R., Mitchell K.E., Nasonova O.N., Noilhan J., Schaake J., Schlosser A., Shao Y., Shmakin A.B., Verseghy D., Warrach K., Wetzel P., Xue Y., Yang Z.-L., Zeng Q. The project for intercomparison of land-surface parameterization schemes (PILPS) phase-2(c) Red-Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes // Global and Planetary Change. 1998. V. 19. № 1–4. P. 161–179.
  27. Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: 1 A discussion of principles // J. Hydrol. 1970. V. 10. № 3. P. 282–290.
  28. Oki T. Validating the runoff from LSP-SVAT models using a global river routing network by one degree mesh // Proc. 13th Conf. on Hydrology. N. Y.: Amer. Met. Soc., 1997. P. 319–322.
  29. Shmakin A.B. The updated version of SPONSOR land surface scheme: PILPS-influenced improvements // Global Plan. Change. 1998. V. 19. № 1–4. P. 49–62.
  30. Su F., Adam J.C., Bowling L.C., Lettenmaier D.P. Streamflow simulations of the terrestrial Arctic domain // J. Geophys. Res. 2005. V. 110. D08112.
  31. Wu H., Kimball J.S., Li H., Huang M., Leung L.R., Adler R.F. A new global river network database for macroscale hydrologic modeling // Water Resour. Res. 2012. V. 48. № 9. W09701.
  32. Zhao M., Dirmeyer P. Production and Analysis of GSWP_2 near-surface meteorology data sets // COLA Technical Report. Calverton: Center for Ocean–Land–Atmosphere Studies, 2003. № 159. 38 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The territory of the Ob-Irtysh basin.

Download (154KB)
3. Fig. 2. The design scheme of the Ob-Irtysh basin and its river network. Light gray color indicates the river basin. Irtysh to the stock station Khanty-Mansiysk (2), dark gray - part of the river basin. Ob to stock st. Kolpashevo (3), the lower part of the Ob-Irtysh basin was not painted over to the stock station Salekhard (1).

Download (333KB)
4. Fig. 3. Dynamics of the measured (1) and calculated (2) daily values ​​of the runoff layer p. Ob in the area of ​​st. Salekhard (a) and Art. Kolpashevo (b), as well as p. Irtysh near the station. Khanty-Mansiysk

Download (236KB)
5. Fig. 4. Climatic (averaged over billing periods) measured (1) and calculated (2) annual hydrographs of monthly runoff layers of the river. Ob in the area of ​​stations Salekhard (a) and Kolpashevo (b), as well as the river. Irtysh near the station. Khanty-Mansiysk (c).

Download (113KB)
6. Fig. 5. Dynamics of annual values ​​of precipitation (1), total evaporation (2) and effluent formation (3) for three selected parts of the Ob-Irtysh basin: the river basin. Irtysh to the station Khanty-Mansiysk (a), the upper part of the river basin. Ob to Art. Kolpashevo (b), the lower part of the river basin. Ob to Art. Salekhard (c), as well as for the Ob-Irtysh basin as a whole (d).

Download (163KB)
7. Fig. 6. The values ​​of the uncertainty of the runoff p. Ob in the area of ​​the stock station Salekhard: (a) is the absolute uncertainty of the annual runoff (the black bold straight line is the average value of the calculated annual runoff for the calculation period, the dashed straight lines show the range of the absolute uncertainty of the annual runoff, the black and gray thin lines show the specific realizations of the annual runoff - measured and calculated respectively ); (b) the absolute uncertainty of the monthly runoff (black bold and dashed lines show the average values ​​of the calculated monthly runoff layers and the range of their uncertainty, respectively, gray dots represent specific realizations of the calculated monthly runoff layer values ​​in different years; (c) the intra-annual dynamics the uncertainties of the monthly values ​​of the runoff layer.

Download (102KB)
8. Fig. 7. Comparison of the characteristics of snow reserves in the Ob-Irtysh basin area, obtained from snow measuring data and calculated on the basis of the SWAP model: (a) - dynamics of the river averaged over the basin. Both measured (circles) and calculated (line) snow reserves; (b) is the integral distribution function P over the basin territory of the climatic (averaged over the calculated period) snow reserves values ​​obtained on the basis of snow-measuring observations (1) and calculated using the SWAP model (2) as of March 31.

Download (149KB)

Copyright (c) 2019 Russian academy of sciences