The Effect of Moscow Megapolis on Warm-Season Precipitation Depending on Large-Scale Atmospheric Conditions

Cover Page

Cite item

Full Text

Abstract

The effect of Moscow megapolis on precipitation of different intensity under contrasting physical–synoptic conditions was estimated. The analysis of long-term standard observations at weather stations in the Moscow Region and the data of high-resolution reanalysis ERA5 over 1988–2020 were used to demonstrate that the effect of the city on heavy precipitation is largest in the cases with higher static instability of the atmosphere, combined with a weak large-scale flow, high moisture content of the atmosphere, and the absence of pronounced frontal zones in the region. On the average over the study period, the excess of the total seasonal precipitation in Moscow relative to the background values over the Moscow region is 5.3%. It was found that the effect of the city on precipitation of various intensity is different: the precipitation of low and medium intensity was less in the city (statistically insignificant), while the heaviest precipitation (above 95 percentile) increased over the city by 11.6% above the background value.

About the authors

Yu. I. Yarinich

Research Computing Center, Moscow State University, 119991, Moscow, Russia; Faculty of Geography, Moscow State University, 119991, Moscow, Russia; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017, Moscow, Russia

Email: julia.yarinich@yandex.ru
Россия, 119991, Москва; Россия, 119991, Москва; Россия, 119017, Москва

M. I. Varentsov

Research Computing Center, Moscow State University, 119991, Moscow, Russia; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, 119991, Moscow, Russia

Email: julia.yarinich@yandex.ru
Россия, 119991, Москва; Россия, 119017, Москва; Россия, 119991, Москва

V. S. Platonov

Faculty of Geography, Moscow State University, 119991, Moscow, Russia

Email: julia.yarinich@yandex.ru
Россия, 119991, Москва

V. M. Stepanenko

Research Computing Center, Moscow State University, 119991, Moscow, Russia; Faculty of Geography, Moscow State University, 119991, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, 119991, Moscow, Russia

Email: julia.yarinich@yandex.ru
Россия, 119991, Москва; Россия, 119991, Москва; Россия, 119991, Москва

A. V. Chernokulsky

Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017, Moscow, Russia; Institute of Geography, Russian Academy of Sciences, 119017, Moscow, Russia

Email: julia.yarinich@yandex.ru
Россия, 119017, Москва; Россия, 119017, Москва

S. G. Davletshin

Russian Institute of Hydrometeorological Information–World Data Center, 249035, Obninsk, Russia

Email: julia.yarinich@yandex.ru
Россия, 249035, Обнинск

E. A. Dronova

Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, 127434, Moscow, Russia

Author for correspondence.
Email: julia.yarinich@yandex.ru
Россия, 127434, Москва

References

  1. Брусова Н.Е., Кузнецова И.Н., Нахаев М.И. Особенности режима осадков в Московском регионе в 2008–2017 гг. // Гидрометеорологические исследования и прогнозы. 2019. № 1. С. 127–142.
  2. Булыгина О.Н., Веселов В.М., Разуваев В.Н., Александрова Т.М. Описание массива срочных данных об основных метеорологических параметрах на станциях России // Свидетельство о гос. регистрации базы данных. 2014. № 2 014 620 549.
  3. Вельтищев Н.Ф. Мезометеорология и краткосрочное прогнозирование // ВМО № 701. Л.: Гидрометеоиздат, 1988. Вып. 701. 136 с.
  4. Григорова Е.С. О мезоклимате московского мегаполиса // Метеорология и гидрология. 2004. № 10. С. 36–45.
  5. Дмитриев А.А., Бессонов Н.П. Климат Москвы (Особенности климата большого города). Л.: Гидрометеоиздат, 1969. 320 с.
  6. Литвиненко Л.Н., Калинина А.А. Распределение осадков на территории Московской области при наличии и отсутствии крупного антропогенного образования // Экология урбанизированных территорий. 2018. № 2. С. 66–71.
  7. Погода и климат: http://www.pogodaiklimat.ru/
  8. Стулов Е.А. Влияние города Москвы на усиление летних осадков // Метеорология и гидрология. 1993. № 11. С. 34–41.
  9. Aleshina M.A., Semenov V.A., Chernokulsky A.V. A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data // Environ. Res. Let. 2021. V. 16. P. 105004.
  10. Bornstein R., LeRoy M. Urban barrier effects on convective and frontal thunderstorms // Extended Abstracts, Fourth Conf. Mesoscale Processes. 1990. P. 120–121.
  11. Catto J.L., Pfahl S. The importance of fronts for extreme precipitation // J. Geophys. Res. Atmos. 2013. V. 118. № 19. P. 10 791–10 801.
  12. Chernokulsky A., Shikhov A., Yarinich Y., Sprygin A. An Empirical Relationship Among Characteristics of Severe Convective Storms, Their Cloud Top Properties and Environmental Parameters in Northern Eurasia // Atmosphere. 2023. V. 14. № 1. P. 174.
  13. Conticello F., Cioffi F., Merz B., Lall U. An event synchronization method to link heavy rainfall events and large-scale atmospheric circulation features // Int. J. Climatol. 2018. V. 38. № 3. P. 1421–1437.
  14. Doswell C.A., Brooks H.E., Maddox R.A. Flash flood forecasting: An ingredients-based methodology // Weather and forecasting. 1996. V. 11. № 4. P. 560–581.
  15. Grieser J. Convection parameters // Selbstverl. 2012. 22 p.
  16. Han J.Y., Baik J.J., Lee H. Urban impacts on precipitation // Asia-Pacific J. Atmospheric Sci. 2014. V. 50. № 1. P. 17–30.
  17. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Quarterly J. Royal Meteorol. Soci. 2020. V. 146. № 730. P. 1999–2049.
  18. Huber-Pock F., Kress C. An operational model of objective frontal analysis based on ECMWF products // Meteorol. Atmospheric Phys. 1989. V. 40. № 4. P. 170–180.
  19. Khain A.P. Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review // Environ. Res. Let. 2009. V. 4. №. 1. P. 015004.
  20. Liu J., Niyogi D. Meta-analysis of urbanization impact on rainfall modification // Sci. Rep. 2019. V. 9. № 1. P. 1–14.
  21. Markowski P., Richardson Y. Mesoscale meteorology in midlatitudes. Ghichester: Wiley-Blackwell., 2010. 407 p.
  22. Oke T.R., Mills G., Christen A., Voogt J.A. Urban climates. Cambridge: Cambridge Univ. Press, 2017. 509 p.
  23. Pendergrass A.G., Hartmann D.L. Changes in the distribution of rain frequency and intensity in response to global warming // J. Climate. 2014. V. 27. № 22. P. 8372–8383.
  24. Riemann-Campe K., Fraedrich K., Lunkeit F. Global climatology of convective available potential energy (CAPE) and convective inhibition (CIN) in ERA-40 reanalysis // Atmospheric Res. 2009. V. 93. № 1–3. P. 534–545.
  25. Rozoff C.M., Cotton W.R., Adegoke J.O. Simulation of St. Louis, Missouri, land use impacts on thunderstorms // J. Applied Meteorol. 2003. V. 42. № 6. P. 716–738.
  26. Shepherd J.M., Stallins J.A., Jin M.L., Mote T.L. Urbanization: Impacts on clouds, precipitation, and lightning // Urban Ecosystem Ecol. 2010. V. 55. P. 1–28.
  27. Tumanov S., Stan-Sion A., Lupu A., Soci C., Oprea C. Influences of the city of Bucharest on weather and climate parameters // Atmospheric Environ. 1999. V. 33. № 24–25. P. 4173–4183.
  28. Varentsov M., Wouters H., Platonov V., Konstantinov P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia // Atmosphere. 2018. V. 9. № 2. P. 50.
  29. Woollings T., Hannachi A., Hoskins B. Variability of the North Atlantic eddy-driven jet stream // Quarterly J. the Royal Meteorol. Soc. 2010. V. 136. № 649. P. 856–868.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (360KB)
3.

Download (367KB)

Copyright (c) 2023 Ю.И. Ярынич, М.И. Варенцов, В.С. Платонов, В.М. Степаненко, А.В. Чернокульский, С.Г. Давлетшин, Е.А. Дронова