Modeling Channel Deformation and Pollutant Transport in Rivers in Permafrost Zone with Local Channel Curvature


Cite item

Full Text

Abstract

The results of laboratory and mathematical modeling of pollutant propagation from thawed sources on bank slopes in curvilinear reaches of rivers in permafrost zone are presented. Particular attention is paid to studying the effect of channel deformations caused by thermal erosion on the speed and character of pollutant spot propagation. The laboratory experiments in the hydraulic flume were primarily focused on determining the difference in the deformation dynamics and solute propagation from thawing sources at different shapes of channel curvature for the farther use of these data as input parameters of mathematical model for its verification. The analysis of a series of numerical calculations at a scale of laboratory experiment and an actual natural object suggested the conclusion regarding the effect of channel morphometric characteristics, the hydrological and thermal parameters of water flow, the characteristics of permafrost channel-forming ground on the dynamics of pollutant propagation in curvilinear reaches of the permafrost zone.

About the authors

E. I. Debolskaya

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: e_debolskaya@yahoo.com
Россия, 119333, Москва

V. K. Debolskii

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: e_debolskaya@yahoo.com
Россия, 119333, Москва

I. I. Gritsuk

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia; RUDN University, 117198, Moscow, Russia; Moscow Automobile and Road Construction State Technical University, 125319, Moscow, Russia

Author for correspondence.
Email: e_debolskaya@yahoo.com
Россия, 119333, Москва; Россия, 117198, Москва; Россия, 125319, Москва

References

  1. Алексютина Д.М., Мотенко Р.Г. Состав, строение и свойства мерзлых и талых отложений побережья Байдарацкой губы Карского моря // Криосфера Земли. 2017. Т. XXI. № 1. С. 13–25.
  2. Дебольская Е.И. Математическая модель русловых деформаций рек криолитозоны // Вод. ресурсы. 2014. Т. 41. № 5. С. 496–506.
  3. Дебольская Е.И., Грицук И.И., Дебольский В.К. и др. Влияние береговых деформаций на распространение примесей в реках криолитозоны (лабораторное и математическое моделирование) // Вод. ресурсы. 2018. Т. 45. № 4. С. 396–407.
  4. Дебольская Е.И., Иванов А.В. Сравнительный анализ применимости моделей русловых деформаций, обусловленных термоэрозией, на реках криолитозоны // Вод. ресурсы. 2020. Т. 47. № 1. С. 45–56.
  5. Дебольская Е.И., Иванов А.В., Остякова А.В. Особенности распространения примеси в руслах рек криолитозоны (лабораторное и математическое моделирование) // Гидротехн. стр-во. 2021. № 4. С. 48–54.
  6. Are F.E. Thermal abrasion of coasts. Proc. 4th Int. Conf. Permafrost. Washington D.C: National Acad. Press, 1983. P. 24–28.
  7. Biskaborn B.K., Smith S.L., Noetzli J. et al. Permafrost is warming at a global scale // Nat. Commun. 2019. 10 (264). https://doi.org/10.1038/s41467-018-08240-4
  8. Cohen J., Screen J.A., Furtado J.C. et al. Recent Arctic amplification and extreme midlatitude weather // Nature Geosci. 2014. V. 7. P. 627–637. https://doi.org/10.1038/ngeo2234
  9. Couture N.J., Irrgang A., Pollard et al. Coastal erosion of permafrost soils along the Yukon Coastal Plain and fluxes of organic carbon to the Canadian Beaufort Sea // J. Geophys. Res. Biogeosci. 2018. V. 123. P. 406–422. https://doi.org/10.1002/2017JG004166
  10. Dupeyrat L., Costard F., Randriamazaoro R. et al. Effects of ice content on the thermal erosion of permafrost: Implications for coastal and fluvial erosion // Permafrost and periglacial processes. 2011. 22 (2). P. 179–187. https://doi.org/10.1002/ppp.722
  11. Fuchs M., Nitze I., Strauss J., Günther F. et al. Rapid Fluvio-Thermal Erosion of a Yedoma Permafrost Cliff in the Lena River Delta // Front. Earth Sci. 2020. V. 8. P. 336. https://doi.org/10.3389/feart.2020.00336
  12. Grosse G., Goetz S., McGuire A.D. et al. Review and synthesis: changing permafrost in a warming world and feedbacks to the Earth System // Environ. Res. Lett. 2016.11:040201. https://doi.org/10.1088/1748-9326/11/4/040201
  13. Günther F., Overduin P.P., Sandakov A.V. et al. Short- and long-term thermo-erosion of ice-rich permafrost coasts in the Laptev Sea region // Biogeosci. 2013. V. 10. P. 4297–4318. https://doi.org/10.5194/bg-10-4297-2013
  14. Lamontagne-Hallé P., McKenzie J.M., Kurylyk B.L. et al. Changing groundwater discharge dynamics in permafrost regions // Environ. Res. Lett. 2018. V. 13 (8). 084017. https://doi.org/10.1088/1748-9326/aad404
  15. Liu J., Hayakawa N., Lu M. et al. Hydrological and geocryological response of winter streamflow to climate warming in Northeast China // Cold Reg. Sci. Technol. 2003. V. 37. P. 15–24.
  16. Ono J., Watanabe M., Komuro Y. et al. Enhanced Arctic warming amplification revealed in a low-emission scenario // Commun. Earth Environ. 2022. V. 3 (27). https://doi.org/10.1038/s43247-022-00354-4
  17. Polyakov I.V., Alekseev G.V., Bekryaev R.V. et al. Observationally based assessment of polar amplification of global warming // Geophys. Res. Lett. 2002. V. 29 (18). 1878. https://doi.org/10.1029/2001GL011111
  18. Rachold V., Grigoriev M.N., Are F.E. et al. Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas // Int. J. Earth Sci. 2000. V. 89. P. 450–460. https://doi.org/10.1007/s005310000113
  19. Randriamazaoro R., Dupeyrat L., Costard F. et al. Fluvial thermal erosion: Heat balance integral method // Earth Surface Processes and Landforms. 2007. V. 32 (12). P. 1828–1840. https://doi.org/10.1002/esp.1489
  20. Rowland J.C., Schwenk J., Shelef E. et al. Pan-arctic flux of soil organic carbon to rivers by river bank erosion // Proc. AGU Fall Meeting Abstracts. 2018.
  21. Serreze M.C., Stroeve J. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society. 2015. V. 373. 20140159. https://doi.org/10.1098/rsta.2014.0159
  22. Stocker T.F., Qin D., Plattner G.-K. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge Univ. Press. 2014. https://doi.org/10.1017/CBO9781107415324
  23. Van Mierlo F.A.J.M. Numerical modelling of wave penetration in ports // MsC Thesis Delft. Unive. Technol. 2014. 119 p.
  24. Wang P., Huang Q., Pozdniakov S. et al. Potential role of permafrost thaw on increasing Siberian river discharge // Environ. Res. Lett. 2021. V. 16. 034046. https://doi.org/10.1088/1748-9326/abe326
  25. Yamazaki Y., Kubota J., Ohata T. et al. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia // Hydrological Processes. 2006. V. 20. P. 453–467. https://doi.org/10.1002/hyp.5914
  26. Zhang T., Frauenfeld O.W., Serreze M.C. et al. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin // J. Geophys. Res. 2005. V. 110. D16101. https://doi.org/10.1029/2004JD005642

Supplementary files


Copyright (c) 2023 Е.И. Дебольская, В.К. Дебольский, И.И. Грицук