Assessment of river runoff components in the Crimean Mountains. 1. Runoff of small rivers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For experimental river basins in the Crimean Mountains, an assessment of the components of river flow was carried out based on the EMMA methodology. The following components of river runoff in karst watersheds are identified: epikarst waters, soil-slope waters and baseflow waters circulating at the contact with underlying impermeable rocks. A significant component of the flow of small rivers consists of epikarst waters. Their proportion in the gauging sections is increasing during floods, naturally increasing with increasing water discharge, obeying logarithmic dependencies. The proportions of baseflow water relative to the proportions of epikarst waters are decreasing.

Full Text

Restricted Access

About the authors

T. S. Gubareva

Institute of Water Problems, Russian Academy of Sciences

Author for correspondence.
Email: tgubareva@bk.ru
Russian Federation, Moscow, 119333

G. N. Amelichev

Institute of Water Problems, Russian Academy of Sciences; Vernadsky Crimean Federal University

Email: tgubareva@bk.ru
Russian Federation, Moscow, 119333; Simferopol, 295007

B. I. Gartsman

Institute of Water Problems, Russian Academy of Sciences; Institute of Natural-Technical Systems

Email: tgubareva@bk.ru
Russian Federation, Moscow, 119333; Sevastopol, 299011

S. V. Tokarev

Institute of Water Problems, Russian Academy of Sciences; Vernadsky Crimean Federal University

Email: tgubareva@bk.ru
Russian Federation, Moscow, 119333; Simferopol, 295007

B. A. Vakhrushev

Institute of Water Problems, Russian Academy of Sciences; Vernadsky Crimean Federal University

Email: tgubareva@bk.ru
Russian Federation, Moscow, 119333; Simferopol, 295007

V. G. Naumenko

Vernadsky Crimean Federal University

Email: tgubareva@bk.ru
Russian Federation, Simferopol, 295007

Ev. G. Amelichev

Institute of Water Problems, Russian Academy of Sciences; Vernadsky Crimean Federal University

Email: tgubareva@bk.ru
Russian Federation, Moscow, 119333; Simferopol, 295007

I. B. Vakhrushev

Institute of Water Problems, Russian Academy of Sciences; Vernadsky Crimean Federal University

Email: tgubareva@bk.ru
Russian Federation, Moscow, 119333; Simferopol, 295007

References

  1. Амеличев Г.Н., Вахрушев Б.А., Дублянский В.Н. Гид родинамика и эволюция спелеоморфогенеза Амткельской карстовой системы (Западная Абхазия) // Геополитика и экогеодинамика регионов. 2007. Т. 3. № 2. С. 52–60.
  2. Вахрушев Б.А., Гигинейшвили Г.Н., Дублянский В.Н., Цвет А.Л. Гидрология и палеогидрология Амткельского карстового района // Тр. Геогр. общества Грузинской ССР. Тбилиси, 1990. Т. XVIII С. 31–39.
  3. Губарева Т.С., Амеличев Г.Н., Гарцман Б.И., Токарев С.В., Хрусталева Л.И., Морейдо В.М. Ионный состав генетических типов природных вод малых речных бассейнов Горного Крыма // Вод. ресурсы. 2024. В печати.
  4. Губарева Т.С., Болдескул А.Г., Трегубов О.Д., Тарбеева А.М., Шамов В.В., Лебедева Л.С., Луценко Т.Н. Экспресс-диагностика источников питания малой арктической реки по результатам краткосрочной гидрологической съемки (Чаунская низменность, Чукотка) // Вод. ресурсы. 2023. Т. 50. № 1. С. 15–27.
  5. Губарева Т.С., Гарцман Б.И., Василенко Н.Г. Источники формирования речного стока в зоне многолетней мерзлоты: оценка методами трассерной гидрологии по данным режимных гидрохимических наблюдений // Криосфера Земли. 2018. Т. 22. № 1. С. 32–43.
  6. Губарева Т.С., Гарцман Б.И., Ефимова Л.Е., Терский П.Н., Белякова П.А., Казачук А.А. Идентификация и оценка источников питания стока заболоченного водосбора в бассейне реки Западная Двина // Гидросфера. Опасные процессы и явления. 2022. Т. 4. № 2. С. 183–201.
  7. Губарева Т.С., Гарцман Б.И., Солопов Н.В. Модель смешения четырех источников питания речного стока с использованием гидрохимических трассеров в задаче разделения гидрографа // Вод. ресурсы. 2018. Т. 45. № 6. С. 583–595.
  8. Губарева Т.С., Гарцман Б.И., Шамов В.В., Болдескул А.Г., Кожевникова Н.К. Компоненты стока малых водосборов Сихотэ-Алиня: обобщение результатов полевых измерений и трассерного моделирования // Изв. РАН. Сер. географическая. 2019. № 6. С. 126–140.
  9. Губарева Т.С., Гарцман Б.И., Шамов В.В., Болдескул А.Г., Кожевникова Н.К. Разделение гидрографа стока на генетические составляющие // Метеорология и гидрология. 2015. № 3. С. 97–108.
  10. Кичигина Н.В., Губарева Т.С., Шамов В.В., Гарцман Б.И. Трассерные исследования формирования речного стока в бассейне озера Байкал // География и природ. ресурсы. 2016. № S5. С. 60–69.
  11. Климчук А.Б. Эпикарст: гидрогеология, морфогенез и эволюция. Симферополь: Сонат, 2009. 111 c.
  12. Померанцев А.Л. Хемометрика в Excel: учебное пособие. Томск.: Изд-во Томского политех. ун-та, 2014. 435 с.
  13. Шамов В.В., Гарцман Б.И., Губарева Т.С., Кожевникова Н.К., Болдескул А.Г. Экспериментальные исследования генетической структуры стока с помощью химических трассеров: постановка задачи // Инженерные изыскания. 2013. № 1. С. 60–69.
  14. Blaen P.J., Hannah D.M., Brown L.E., Milner A.M. Water source dynamics of high Arctic river basins // Hydrol. Process. 2014. 28. P. 3521–3538.
  15. Bugaets A., Gartsman B., Gubareva T., Lupakov S., Kalugin A., Shamov V., Gonchukov L. Comparing the runoff decompositions of small experimental catchments: end-member mixing analysis (EMMA) vs. hydrological modelling // Water. 2023. V. 15. № 4. 752.
  16. Christophersen N., Hooper R.P. Multivariate analysis of streamflow chemical data: The use of principal component analysis for the end-member mixing problem // Water Resour. Res. 1992. V. 28. № 1. P. 99–107.
  17. Hooper R.P. Diagnostic tools for mixing models of stream water chemistry. // Water Resour. Res. 2003. V. 39. 1055. http://dx.doi.org/10.1029/2002WR001528
  18. Hugenschmidt C., Ingwersen J., Sangchan W., Sukvanachaikul Y., Duffner A., Uhlenbrook S., Streck T. A three-component hydrograph separation based on geochemical tracers in a tropical mountainous headwater catchment in northern Thailand // Hydrol. Earth Syst. Sci. 2014. V. 18. P. 525–537.
  19. Joerin C., Beven K.J., Iorgulescu I., Musy A. Uncertainty in hydrograph separations based on geochemical mixing models // J. Hydrol. 2002. V. 255. P. 90–106.
  20. Klaus J., McDonnell J.J., Jackson C.R., Du E., Griffiths N.A. Where does streamwater come from in low-relief forested watersheds?: a dual-isotope approach // Hydrol. Earth Syst. Sci. 2015. V. 19. P. 125–135.
  21. Liu F., Bales R.C., Conklin M.H., Conrad M.E. Streamflow generation from snowmelt in semi-arid, seasonally snow-covered, forested catchments, Valles Caldera, New Mexico // Water Resour. Res. 2008. V. 44. W12443. https://doi.org/10.1029/2007WR006728
  22. Munyaneza O., Wenninger J., Uhlenbrook S. Identification of runoff generation processes using hydrometric and tracer methods in a meso-scale catchment in Rwanda // Hydrol. Earth Syst. Sci. 2012. V. 16. P. 1991–2004.
  23. Rahman K., Besacier-Monbertrand A.L., Castella E., Lods-Crozet B., Ilg C., Beguin O. Quantification of the daily dynamics of streamflow components in a small alpine watershed in Switzerland using end member mixing analysis // Environ. Earth Sci. 2015. V. 74. P. 4927–4937.
  24. Schmieder J., Hanzer F., Marke T., Garvelmann J., Warscher M., Kunstmann H., Strasser U. The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment // Hydrol. Earth Syst. Sci. 2016. V. 20. P. 5015–5033.
  25. Scholl M.A., Shanley J.B., Murphy S.F., Willenbring J.K., Occhi M., González G. Stable-isotope and solute-chemistry approaches to flow characterization in a forested tropical watershed Luquillo Mountains, Puerto Rico //Appl. Geochem. 2015. V. 63. P. 484–497.
  26. Soulsby C., Petry J., Brewer M.J., Dunn S.M., Ott B., Malcolm I.A. Identifying and assessing uncertainty in hydrological pathways: a novel approach to end member mixing in a Scottish agricultural catchment // J. Hydrol. 2003. V. 274. P. 109–128.
  27. Viennet D., Lorette G., Labat D., Fournier M., Sebilo M., Araspin O., Crançon P. Mobile sources mixing model implementation for a better quantification of hydrochemical origins in allogenic karst Outlets: Application on the Ouysse Karst // System. Water. 2023. V. 15. 397. https://doi.org/10.3390/w15030397
  28. Wilson A.M., Williams M.W., Kayastha R.B., Racoviteanu A. Use of a hydrologic mixing model to examine the roles of meltwater, precipitation and groundwater in the Langtang River basin, Nepal //Ann. Glaciol. 2016. V. 57. P. 155–168.
  29. Wu J.K., Wu X.P., Hou D.J., Liu S.W., Zhang X.Y., Qin X. Streamwater hydrograph separation in an alpine glacier area in the Qilian Mountains, northwestern China // Hydrol. Sci. J. 2016. V. 61. P. 2399–2410.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Maps of watersheds: a – Kuchuk-Uzenbash River, b – Tonas River. 1 – hydrological cross-sections (I – Kuchuk-Uzenbash River – Mnogorechye village, II – Tonas River – above Ptichye Creek, III – Tonas River – Tonasu-5 cross-section); 2 – weather stations (M – Mnogorechye, O – Olmeskhir, K – Karabi); sources: 3 – large, 4 – small, 5 – wells; relief elements: 6 – karst cavities; boundaries: 7 – distribution of Upper Jurassic carbonate rocks, 8 – river basins.

Download (877KB)
3. Fig. 2. Graphs of the relationship “residuals (E) – measured values” at the 2D level: a – r. Kuchuk-Uzenbash – v. Mnogorechye, b – r. Tonas – Ptichiy. 1 – river samples, 2 – “deviating values”, p – probability of absence of correlation links on the graphs.

Download (270KB)
4. Fig. 3. Water mixing diagrams in U-space: a – Kuchuk-Uzenbash River, b – Tonas River – above Ptichiy Creek. Sources of water supply: BS – base flow, PSK – soil-slope waters, EK – epikarst runoff, AO – atmospheric precipitation. Samples: R – river, R (P) – river verification sample, R (T-5) – river from Tonasu-5 section; springs: B-T – Besh-Tekne, L. A-Ch – Left Azmenyn-Chokrak, Pr. A-Ch – Right Azmenyn-Chokrak, Ch-S – Chok-Su, Yu-II – Yurka-II, E-T – Eki-Tekne, D-Ch – Darkha-Chok rakly, T – Tullyuk, Ku – Kuzgunny (yayla) T-5 – Tonasu-5; water manifestations: Ch-D - Cherez-Dere gully, Sh-D - Shurban-Dere gully, Ku-D - Kuzgunny-Dere gully, Ka-D - Karagach-Dere gully, P - stream. Ptichy, B-S – the sources of the river. Bai-Su, I – Spaniard well, E-S – well. Yeni-Sala (Krasnoselovka village), sk avenue - a temporary spring on the right slope.

Download (193KB)
5. Fig. 4. Separation of river flow by sources of supply on the dates of survey: a – Kuchuk-Uzenbash River – Mnogorechye village, b – Kuchuk-Uzenbash River (test sample), c – Tonas River – above Ptichye Creek, d – Tonas River – Tonasu-5. Sources of supply: EK, PSK, BS (decryption in the text), Q – water flow in the river section.

Download (918KB)
6. Fig. 5. Measured and model concentrations of tracers used in the mixing models. a – Kuchuk-Uzenbash River: calibration sample from 15.06.2021 to 27.02.2023, verification sample from 26.02.2022 to 10.03.2023; b – Tonas River: cross section upstream of the mouth of Ptichye Creek from 20.06.2021 to 09.03.2023, Tonasu-5 cross section – from 16.06.2021 to 28.07.2022.

Download (532KB)
7. Fig. 6. Dependences of the shares of epikarst (EK), base (BS) types of runoff on water discharge (Q) and their ratio (EK/BS) in the outlet sections: a – Kuchuk-Uzenbash River, b – Tonas River – upstream of Ptichye Creek, c – Tonas River – Tonasu-5.

Download (377KB)

Copyright (c) 2024 Russian Academy of Sciences