Features of the karst water regime in the Skelskaya Cave (Ai-Petry massif, the Mountain Crimea) and their hydrogeological interpretation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article is devoted to the analysis of long-term (2012–2023) monitoring data of hydrological (levels) and physico-chemical (temperature, specific electrical conductivity) characteristics of karst waters in the Skelskaya Cave. Parallel observations in opposite parts of the cave (Western and Eastern lakes) revealed synchronous fluctuations of levels, but different dynamics of temperature, specific conductivity and isotopic composition of waters. Differences in physico-chemical parameters are particularly strong during flood events, indicating that two streams of karst water from different catchment areas flow into the cave. The Karadagsky and Tarpanbairsky feeding areas, occupying different elevations and directing their waters along the Karadagsky fault toward the Western and Eastern lakes of the cave, respectively, were identified. Comparison of water level fluctuations in the cave with the dynamic of the Skelsky spring discharge, as well as physicochemical and isotopic characteristics during floods, allowed us to establish a confident connection between them. Thus, the Skelsky spring is the main discharge point (drain) of the Skelskaya cave karst aquifer system.

Full Text

Restricted Access

About the authors

S. V. Tokarev

V.I. Vernadsky Crimean Federal University; Water Problems Institute

Author for correspondence.
Email: tokcrimea@list.ru
Russian Federation, Simferopol, 295007; Moscow, 119333

G. N. Amelichev

V.I. Vernadsky Crimean Federal University; Water Problems Institute

Email: tokcrimea@list.ru
Russian Federation, Simferopol, 295007; Moscow, 119333

References

  1. Амеличев Г.Н. Обоснование заповедного статуса карстовых полостей Республики Крым на основе оценки спелеоресурсного потенциала // Вопр. географии. Сб. 147. Спелеология и карстоведение. М.: Изд. дом “Кодекс”, 2018. С. 363–387.
  2. Вахрушев Б.А. Районирование карста Крымского полуострова // Спелеология и карстология. 2009. № 3. С. 9–46.
  3. Головцын В.Н., Смольников Б.М., Дублянский В.Н., Иванов Б.Н. Применение геоэлектрических исследований к решению основных проблем карста Горного Крыма. Киев: Наукова думка, 1966. 150 с.
  4. Дублянский В.Н. Карстовые пещеры и шахты Горного Крыма. Л.: Наука, 1977. 180 с.
  5. Дублянский В.Н., Вахрушев Б.А., Климчук А.Б., Киселев В.Э. Крупные карстовые полости СССР. Т. II. Крымская спелеологическая провинция. К., 1987. 65 с.
  6. Дублянский В.Н., Дублянская Г.Н. Карстоведение. Ч. 1. Общее карстоведение. Пермь, 2004. 308 с.
  7. Дублянский В.Н., Кикнадзе Т.З. Гидрогеология карста альпийской складчатой области юга СССР. М.: Наука, 1984. 128 с.
  8. Дублянский В.Н., Ломаев А.А. Карстовые пещеры Украины. Киев: Наук. думка, 1980. 180 с.
  9. Дублянский В.Н., Шутов Ю.И., Приблуда В.Д. Индикаторные опыты в некоторых карстовых областях Альпийской складчатой зоны // Изв. вузов. Геол. и разв. 1975. № 5. С. 74–82.
  10. Красная книга Севастополя. Калининград; Севастополь: РОСТ-ДОАФК, 2018. 432 с.
  11. Приблуда В.Д., Коджаспиров А.А., Дублянский В.Н. Баланс подземных вод юго-западной части Горного Крыма // Геол. журн. Т. 39. Вып. 2. 1979. С. 38–46.
  12. Самохин Г.В., Турбанов И.С. Пещера Скельская // Атлас пещер России / Гл. ред А.Л. Шелепин. М.: РГО, 2019. С. 230–233.
  13. Токарев С.В., Амеличев Г.Н., Токарев И.В. Новые данные о гидрогеологических условиях западной части Ай-Петринского карстового массива (по результатам наблюдений паводка в феврале 2018 г.) // Теория и практика современной карстологии и спелеологии. Материалы международ. науч.-практ. конф. “III Крымские карстологические чтения”. Симферополь, 2021. С. 80–87.
  14. Чиганов И.А., Бакшевская В.А., Поздняков С.П. Модель формирования родникового стока в трещинно-карстовом бассейне на примере верховьев р. Черная // Тр. Всерос. науч. конф. с Международ. участием “Современная гидрогеология: актуальные вопросы науки, практики и образования”. М.: МГУ, 2023. С. 131–137.
  15. Bonacci O., Roje-Bonacci T. Water temperature and electrical conductivity as an indicator of karst aquifer: the case of Jadro Spring (Croatia) // Carbonates and Evaporites. 2023. V. 38. 55. https://doi.org/10.1007/s13146-023-00881-x
  16. COST Action 65 – Hydrogeological aspects of groundwater protection in karstic areas. Final Rep. Brussels, Luxembourg: ECSC-EC-EAEC, 1995. 446 p.
  17. Dublyansky Yu.V., Klimchouk A.B., Tokarev S.V., Amelichev G.N., Spötl C. Groundwater of the Crimean Peninsula: A first systematic study using stable isotopes // Isotopes in Environ. Health Studies. 2019. V. 55. Iss. 5. P. 419–437. doi: 10.1080/10256016.2019.1650743
  18. Fiorillo F., Pagnozzi M., Addesso R., Cafaro S., D’Angeli I.M., Esposito L., Leone G., Liso I.S., Parise M. Uncertainties in understanding groundwater flow and spring functioning in karst / Eds M.J. Currell, B.G. Katz // Threats to Springs in a Changing World: Science and Policies for Protection. 2023. P. 131–143. https://doi.org/10.1002/9781119818625.ch9
  19. Ford D., Williams P. Karst hydrogeology and geomorphology. Chichester: Wiley, 2007. 576 p.
  20. Iacurto S., Grelle G., De Filippi F.M., Sappa G. Karst spring recharge areas and discharge relationship by oxygen-18 and deuterium isotopes analyses: a case study in Southern Latium Region, Italy // Applied Sci. 2020. V. 10. Iss. 5. 1882. doi: 10.3390/app10051882
  21. Marques T., Galvão P., Assunção P., Pandolf B., Marshall P., Paiva I. Natural responses of Neoproterozoic dynamic karst springs to rainfall events, São Miguel Watershed, Minas Gerais, Brazil // Hydrol. Processes. 2024. V. 38. Iss. 3. E15107. https://doi.org/10.1002/hyp.15107
  22. Ravbar N., Engelhardt I., Goldscheider N. Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: the case of the Podstenjšek spring, Slovenia // Hydrol. Processes. 2011. V. 25. Iss. 13. P. 2130–2140. doi: 10.1002/hyp.7966
  23. Stevanović Z. Karst waters in potable water supply: a global scale overview // Environ. Earth Sci. 2019. V. 78. № 662. P. 1–12. doi: 10.1007/s12665-019-8670-9
  24. Stroj A., Briški M., Oštric M. Study of groundwater flow properties in a karst system by coupled analysis of diverse environmental tracers and discharge dynamics // Water. 2020. V. 12. Iss. 9. 2442. doi: 10.3390/w12092442
  25. Vakhrushev B.A., Amelichev G.N., Tokarev S.V., Samokhin G.V. The main problems of karst hydrogeology in the Crimean peninsula // Water Resour. 2022. V. 49. № 4. P. 595–604. doi: 10.1134/S0097807822040182

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location, morphology and geological conditions of Skelskaya Cave: a – orohydrographic conditions of the area where the study object is located (1 – small springs, 2 – large karst springs, watercourses: 3 – temporary, 4 – permanent, 5 – boundaries of karst subregions: I – West Aipetri, II – Central Aipetri, III – East Aipetri); b – plan and section of Skelskaya Cave (based on [5]); c – schematic geological structure of the Skelskaya Cave area (rocks: 1 – Upper Jurassic limestones, 2 – Lower Cretaceous clays; 3 – main peaks; 4 – tectonic faults; 5 – karst cavities (E – Entuziastov, K – Kirillovskaya, M – Maksimovich); 6 – permanent and temporary sources; 7 – directions of underground runoff; 8 – elements of rock bedding).

Download (478KB)
3. Fig. 2. Characteristics of the hydrological regime of karst waters in the Skelskaya Cave for 2013–2023: a – distribution of flood events of varying intensity (rises in the level of karst waters of varying heights) by months; b – intra-annual dynamics of average ten-day levels of karst groundwater and average monthly precipitation amounts by m/s Ai-Petri; c – raster diagram of average ten-day levels of karst waters for the observation period (empty cells correspond to breaks in observations). The boundaries of the hydrological year are taken from October of the previous calendar year to September of the specified year.

Download (459KB)
4. Fig. 3. Dynamics of the main hydrological and hydrochemical parameters of karst waters in the Western Lake of the Skelskaya Cave (a) and the course of precipitation and temperature in m/s of Ai-Petri (b) for the period from October 2012 to February 2015.

Download (641KB)
5. Fig. 4. Dynamics of the main hydrological (level) and physicochemical (temperature, direct electrical conductivity) parameters of karst waters in the Western Lake of the Skelskaya Cave (upper diagram) and the course of precipitation and temperature in m/s of Ai-Petri (lower diagram) during January and February 2014.

Download (451KB)
6. Fig. 5. Records of a parallel series of hydrological and hydrochemical observations in the Western and Eastern lakes of the Skelskaya Cave for the winter-spring period of 2021–2022. The upper diagram shows a series of temperature and precipitation in m/s of Ai-Petri. The middle diagram shows fluctuations in the specific electrical conductivity of waters in the lakes against the background of general level fluctuations. The lower diagram shows fluctuations in water temperature in the lakes.

Download (910KB)
7. Fig. 6. Dynamics of δ18O content in the lakes of the Skelskaya Cave and other large water sources (Skelsky and Ognenny Griffin springs, Uzundzha River) in its vicinity during the flood in February 2018.

Download (312KB)
8. Fig. 7. Scheme of underground karst runoff of the Skelskaya Cave and the Skelsky Spring. Stratigraphic stages: 1 - Novobobrovskaya strata (clays), 2 - Baydarskaya suite (limestones), 3 - Deymenderinskaya suite (clays, limestones), 4 - Bedenekyrskaya suite (limestones), 5 - Yalta suite (limestones), 6 - Yaylinskaya suite (limestones), 7 - Ayvasil suite (sandstones, clays), 8 - Melas suite (sandstones, siltstones, argillites), 9 - Karadag suite (lavas), 10 - Tauride series (sandstones, siltstones, argillites). Other designations: 11 - small springs; 12 - large karst springs; karst cavities: 13 – large (Sk – Skelskaya, KM – Kristallnaya-Maksimovicha, Chr – Chernaya), 14 – significant (En – Entuziastov), ​​15 – small (K – Kirillovskaya); 16 – supposed boundaries of the catchment area of ​​the Skelskaya Cave KVS, 17 – isolines of the density of karst sinkholes (units/km²), 18 – tectonic faults, 19 – supposed directions of underground karst runoff, 20 – the same during floods.

Download (791KB)
9. Fig. 8. Diagrams showing the relationship between the flow rate of the Skelsky spring (along the GP on the Chernaya River) and the levels of karst waters in the Skelskaya cave: a – dynamics of average daily flow rates at the GP of the Chernaya River (1) and levels in the Skelskaya cave (2) for 2014–2015; b – relationship between average daily flow rates Q (m³/s) of the Chernaya River and water levels H (m) in the Skelskaya cave.

Download (206KB)

Copyright (c) 2024 Russian Academy of Sciences