Microplastic particles investigation in karst aquifer (Zvenigorod, Russia)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The growing production of plastic products, the majority (about 54%) of which are single-use goods, and the lack of effective plastic waste management have led to the global problem of environmental contamination by polymers. Micro- (< 5 mm) and nano-sized (< 100 nm) plastic particles (MP and NP, respectively) are found in all environments and even in living organisms. The majority of researches are focused on microplastics in surface waters, but MP and NP particles have been detected also in groundwater. The article summarizes the results of current research focused on the analysis of groundwater contamination by microplastic particles. The results of testing the sample from the Podolsko-Myachkov aquifer for the presence of microplastics in the Zvenigorodskaya biostation are presented. Visual characterization was carried out using an Olympus BX53M light microscope, the chemical composition of the polymers was determined using an EnSpectr 532 Raman spectrometer. Identification showed the presence of various polymers: polyethylene, polyurethane, polycarbonate, polyimide. Phenol-formaldehyde and polyterpene resins and various copolymers were also detected. Analysis of the chemical composition of particles revealed among the potential polymers a significant part of natural polymers being cellulose and biodegradable polymer zein. Microplastics are represented by fragments, microfibers and films, which indicate groundwater contamination by secondary microplastics. The abundance of identified particles was 2 item/L.

全文:

受限制的访问

作者简介

E. Filimonova

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: ea.filimonova@yandex.ru
俄罗斯联邦, Moscow

L. Gutnikova

Lomonosov Moscow State University

Email: ea.filimonova@yandex.ru
俄罗斯联邦, Moscow

A. Preobrazhenskaya

Lomonosov Moscow State University

Email: ea.filimonova@yandex.ru
俄罗斯联邦, Moscow

A. Chistyakova

Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: ea.filimonova@yandex.ru
俄罗斯联邦, Moscow; Moscow

A. Efimova

Lomonosov Moscow State University

Email: ea.filimonova@yandex.ru
俄罗斯联邦, Moscow

R. Veselovsky

Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: ea.filimonova@yandex.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Веселовский Р.В., Дубиня Н.В., Пономарев А.В. и др. Центр коллективного пользования института физики земли им. О.Ю. Шмидта РАН “Петрофизика, геомеханика и палеомагнетизм” // Geodynamics & Tectonophys. 2022. 13 (2). 0579.
  2. Казак Е.С., Филимонова Е.А., Преображенская А.Е. Микро- и нанопластик в природных водах России и проблемы его определения // Вестн. Моск. ун-та. Сер. 4, Геология. 2022. № 6. С. 110–123.
  3. Казмирук В.Д. Микропластик в окружающей среде: Нарастающая проблема планетарного масштаба. М.: ЛЕНАНД, 2020. 432 с.
  4. Лехов А.В., Кортунов Е.В., Лехов В.А., Самарцев В.Н., Шарапута М.К. Детализация гидрогеологических характеристик водоносного горизонта в карстующихся известняках (Звенигородский полигон МГУ им. М.В. Ломоносова) // Инженерная геология. 2019. Т. ХIV. № 1. С. 72–87.
  5. Поздняков Ш.Р., Иванова Е.В., Гузева А.В., Мартинсон К.Д., Тихонов, Д.А. Исследование содержания частиц микропластика в воде, донных отложениях и грунтах прибрежной территории Невской губы Финского залива // Вод. ресурсы. 2020. 47 (4). С. 411–420.
  6. Полевые методы гидрогеологических, инженерно-геологических, геокриологических, инженерно-геофизических и эколого-геологических исследований / Под ред. В.А.Королева, Г.И. Гордеевой, С.О. Гриневского, В.А. Богословского. М.: Изд-во Моск. ун-та, 2000. 352 с.
  7. Филимонова Е.А. и др. Микропластик в подземных водах: Первые результаты исследований на территории России // Тр. Всерос. науч. конф. с международ. участием “Современная гидрогеология: актуальные вопросы науки, практики и образования”. М.: Изд-во МГУ, 2023. С. 512–517.
  8. Cole M. et al. Microplastics as contaminants in the marine environment: A review // Marine Pollution Bull. 2011. 62. P. 2588–2597.
  9. Esfandiari A., Abbasi S., Peely A.B. et al. Distribution and transport of microplastics in groundwater (Shiraz aquifer, southwest Iran) // Water Res. 220. 2022118622.
  10. Filimonova E.A., Preobrazhenskaya A.E., Gutnikova L.O. Microplastics in russian freshwater systems: a review // RJES. 2024. V. 24. № 3. P. 1–23.
  11. Frank Y.A., Vorobiev E.D., Vorobiev D.S. et al. Preliminary Screening for Microplastic Concentrations in the Surface Water of the Ob and Tom Rivers in Siberia, Russia // Sustainability. 2021. V. 13. I. 80.
  12. Jeong E., Kim Y., Lee J. et al. Microplastic contamination in groundwater of rural area, eastern part of Korea // Sci. Total Environ. 2023. V. 895. I. 165006.
  13. Li C., Busquets R., Campos L. Assessment of microplastics in freshwater systems: A review // Sci. Total Environ. 2020. V. 707. I. 135578.
  14. Masura J., Baker J., Foster G., Arthur C. Laboratory methods for the analysis of microplastics in themarine environment: recommendations for quantifying synthetic particles in watersand sediments. // NOAA Tech. Memorandum NOS-OR&R-48. 2015. 31 p.
  15. Mintenig S.M., Loder M.G., Primpke S. et al. Low numbers of microplastics detected in drinking water from ground-water sources // Sci. Total Environ. 2019. V. 648. 631–635 p.
  16. Nava V., Chandra S., Aherne J. et al. Plastic debris in lakes and reservoirs // Nature. 2023. V. 619. № 7969. P. 317–322.
  17. Panno S.V., Kelly W.R., Scott J. et al. Microplastic Contamination in Karst Groundwater Systems // Groundwater. 2019. V. 57. P. 189–196.
  18. Samandra S., Johnston J.M., Jaeger J.E. et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia // Sci. Total Environ. 2022. V. 802. I. 149727.
  19. Selvam S., Jesuraja K., Venkatramanan S. et al. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India // J. Hazardous Materials. 2021. V. 402. I. 123786.
  20. Wan Y., Chen X., Liu Q. et al. Informal landfill contributes to the pollution of microplastics in the surrounding environment // Environ. Pollut. 2022. V. 293. I. 118586
  21. Zobkov M., Belkina N., Kovalevski V. et al. Microplastic abundance and accumulation behavior in Lake Onego sediments: a journey from the river mouth to pelagic waters of the large boreal lake // J. Environ. Chem. Engineering. 2020. V. 8. I. 104367.
  22. Zobkov M., Zobkova M., Galakhina N., Efremova T. Method for microplastics extraction from Lake sediments // MethodsX 7 101140. 2020. 16 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Principal hydrogeological section in the area of the Zvenigorod Biostation, according to [6] with additions.

下载 (538KB)
3. Fig. 2. Schematic geological section of the well and schematic diagram of the groundwater sampling unit for microplastics.

下载 (402KB)
4. Fig. 3. Results of visual characterisation of potential microplastic particles.

下载 (72KB)
5. Fig. 4. Results of particle identification by Raman spectroscopy. 1 - natural polymer; 2 - unidentified polymer, ‘noisy’ spectrum; 3 - identified microplastic.

下载 (334KB)
6. Fig. 5. Raman spectra of identified natural polymer particles. Particle numbers: 63 - cellulose, 120 - zein (a protein of plant origin from the group of prolamines).

下载 (126KB)
7. Fig. 6. Photo of natural and synthetic polymers determined by Raman spectra. The number above the filter section is the number of the particle in the catalogue; 46, 63, 110 - cellulose fibres, 80 - phenol-formaldehyde resin fragment, 198 - ethyl acrylate-based copolymer fibre, 235 - polyethylene film.

下载 (364KB)
8. Fig. 7. Composition of identified microplastic particles, the first digit in the extract is the type of polymer: 1 - polyethylene, 2 - resins, 3 - copolymers, 4 - ethylene-propylene rubber, 5 - polyimide, 6 - polyurethane, 7 - polycarbonate; the second digit is the concentration, pcs/l.

下载 (340KB)
9. Fig. 8. Raman spectra of identified microplastic particles. Particle numbers: 187 - polyethylene, 237 - polyimide, 80 - phenol formaldehyde resin; 88 - polycarbonate, 145 - ethylene-propylene copolymer, 139 - polyurethane, 198 - ethyl acrylate-based copolymer.

下载 (270KB)

版权所有 © Russian academy of sciences, 2025