Sub-Finsler problem on Cartan group
- Authors: Ardentov A.A.1, Sachkov Y.L.1
-
Affiliations:
- Ailamazyan Program Systems Institute of the Russian Academy of Sciences
- Issue: Vol 484, No 2 (2019)
- Pages: 138-141
- Section: Mathematics
- URL: https://journals.eco-vector.com/0869-5652/article/view/11714
- DOI: https://doi.org/10.31857/S0869-56524842138-141
- ID: 11714
Cite item
Abstract
Left invariant l-infinity sub-Finsler problem on Cartan group is considered as time-optimal control problem. We describe abnormal and singular normal trajectories, then prove that all such trajectories are optimal. We construct the bang-bang flow and obtain upper bounds on the number of switchings on bang-bang and mixed minimizers.
Keywords
Full Text

About the authors
A. A. Ardentov
Ailamazyan Program Systems Institute of the Russian Academy of Sciences
Author for correspondence.
Email: aaa@pereslavl.ru
Russian Federation, Veskovo Pereslavsky district, Yaroslavl region
Yu. L. Sachkov
Ailamazyan Program Systems Institute of the Russian Academy of Sciences
Email: aaa@pereslavl.ru
Russian Federation, Veskovo Pereslavsky district, Yaroslavl region
References
- Pansu Р. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un // Ann. Math. (2) 1989. V. 128. № 1. Р. 1–60.
- Берестовский В.Н. Однородные пространства с внутренней метрикой. II // Сиб. мат. журн. 1989. Т. 30. № 2. С. 14–28; 225.
- Boscain U., Chambrion Th., Charlot G. Nonisotropic 3-Level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy // Discrete Contin. Dyn. Syst. Ser. B. 2005. V. 5. № 4. P. 957–990.
- Busemann H. The isoperimetric Рroblem in the Minkowski Plane // AJM. 1947. V. 69. P. 863–871.
- Barilari D., Boscain U., Le Donne E., Sigalotti M. Sub-Finsler Structures from the Time-Optimal Control Viewpoint for Some Nilpotent Distributions // J. Dyn. Control Syst. 2017. V. 23. P. 547.
- Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. М.: Физматлит, 2005.
- Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1961.
- Agrachev A.A., Gamkrelidze R.V. Symplectic Geo- metry for Optimal Control. Nonlinear Control-lability and Optimal Control. Monogr. Text-books Pure Appl. Math. N.Y.: Dekker, 1990. V. 133. P. 263–277.
Supplementary files
