Sub-Finsler problem on Cartan group

Cover Page

Cite item

Full Text

Abstract

Left invariant l-infinity sub-Finsler problem on Cartan group is considered as time-optimal control problem. We describe abnormal and singular normal trajectories, then prove that all such trajectories are optimal. We construct the bang-bang flow and obtain upper bounds on the number of switchings on bang-bang and mixed minimizers.

Full Text

Субфинслерова геометрия является естественным обобщением субримановой (а потому и римановой) геометрии. Пусть M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eaaaa@36DA@ — гладкое многообразие, ∆ — векторное распределение на M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eaaaa@36DA@ , тогда субриманова структура задаётся скалярным произведением в ∆, а субфинслерова структура — нормой в ∆.[1]

Заметный интерес к субфинслеровой геометрии возник в последние годы в связи с её применением в геометрической теории групп [1], изометрически однородных пространствах [2], теории управления [3]. Важными вопросами субфинслеровой (как и субримановой) геометрии являются описание кратчайших и сфер, при этом естественными простейшими случаями являются левоинвариантные структуры на нильпотентных группах Ли. Левоинвариантная субфинслерова задача на группе Гейзенберга была исследована в работе [4]. Нильпотентные l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYgadaqhaa WcbaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaeaaaaaaaa@3D4D@ -субфинслеровы структуры в случаях Мартине и Грушина были изучены в работе [5]. Данная работа продолжает эту линию исследований и посвящена левоинвариантной l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYgadaqhaa WcbaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaeaaaaaaaa@3D4D@ -субфинслеровой задаче в простейшем 5-мерном свободном нильпотентном случае — на группе Картана.

1. Постановка задачи. Существование решений. Алгебра Картана — это 5-мерная нильпотентная алгебра Ли L=span( X 1 ,, X 5 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a Gaam4CaiaadchacaWGHbGaamOBaiaaiIcacaWGybWaaSbaaSqaaiaa igdaaeqaaOGaaGilaiablAciljaaiYcacaWGybWaaSbaaSqaaiaaiw daaeqaaOGaaGykaaaa@42F9@ с таблицей умножения [ X 1 , X 2 ]= X 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUfacaWGyb WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadIfadaWgaaWcbaGaaGOm aaqabaGccaaIDbGaaGypaiaadIfadaWgaaWcbaGaaG4maaqabaaaaa@3EB4@ , [ X 1 , X 3 ]= X 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUfacaWGyb WaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadIfadaWgaaWcbaGaaG4m aaqabaGccaaIDbGaaGypaiaadIfadaWgaaWcbaGaaGinaaqabaaaaa@3EB6@ , [ X 2 , X 3 ]= X 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUfacaWGyb WaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaadIfadaWgaaWcbaGaaG4m aaqabaGccaaIDbGaaGypaiaadIfadaWgaaWcbaGaaGynaaqabaaaaa@3EB8@ , ad X 4 =ad X 5 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabggacaqGKb GaamiwamaaBaaaleaacaaI0aaabeaakiaai2dacaqGHbGaaeizaiaa dIfadaWgaaWcbaGaaGynaaqabaGccaaI9aGaaGimaaaa@3F89@ . Связная односвязная группа Ли M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eaaaa@36DA@ с алгеброй Ли L MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@36D9@ называется группой Картана.

Левоинвариантная l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYgadaqhaa WcbaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaeaaaaaaaa@3D4D@ -субфинслерова задача на группе Картана ставится следующим образом:

q ˙ = u 1 X 1 + u 2 X 2 ,qM,uU={u 2 | u 1}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqadghagaGaai aai2dacaWG1bWaaSbaaSqaaiaaigdaaeqaaOGaamiwamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadwhadaWgaaWcbaGaaGOmaaqabaGcca WGybWaaSbaaSqaaiaaikdaaeqaaOGaaGilaiaaywW7caWGXbGaeyic I4SaamytaiaaiYcacaaMf8UaamyDaiabgIGiolaadwfacaaI9aGaaG 4EaiaadwhacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0Hgi uD3BaGqbaiab=1risnaaCaaaleqabaGaaGOmaaaakiaacYhaiiaacq GFGaaicqGFGaairqqr1ngBPrgifHhDYfgaiyaacqqFLicucaWG1bGa e0xjIa1aaSbaaSqaaiabg6HiLcqabaGccqGHKjYOcaaIXaGaaGyFai aaiYcaaaa@6B76@

u =max(| u 1 |,| u 2 |), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaebbfv3ySLgzGu eE0jxyaGqbaiab=vIiqjaadwhacqWFLicudaWgaaWcbaqeduuDJXwA KbYu51MyVXgaiyaacqGFEisPaeqaaOGaaGypaiGac2gacaGGHbGaai iEaiaaiIcacaaI8bGaamyDamaaBaaaleaacaaIXaaabeaakiaaiYha caaISaGaaGPaVlaaykW7caaI8bGaamyDamaaBaaaleaacaaIYaaabe aakiaaiYhacaaIPaGaaGilaaaa@55F4@

q(0)= q 0 =Id,q(T)= q 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadghacaaIOa GaaGimaiaaiMcacaaI9aGaamyCamaaBaaaleaacaaIWaaabeaakiaa i2dacaqGjbGaaeizaiaaiYcacaaMf8UaaGzbVlaadghacaaIOaGaam ivaiaaiMcacaaI9aGaamyCamaaBaaaleaacaaIXaaabeaakiaaiYca aaa@48AE@ Tmin. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfacqGHsg IRciGGTbGaaiyAaiaac6gacaaIUaaaaa@3C58@

Существование оптимальных управлений следует из теорем Рашевского–Чжоу и Филиппова [6].

2. Принцип максимума Понтрягина. Введём гамильтонианы h i (λ)=λ, X i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamyAaaqabaGccaaIOaGaeq4UdWMaaGykaiaai2dacqGHPms4 cqaH7oaBcaaISaGaamiwamaaBaaaleaacaWGPbaabeaakiabgQYiXl aacYcaaaa@4497@ λ T * M, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSjabgI GiolaadsfadaahaaWcbeqaaiaaiQcaaaGccaWGnbGaaiilaaaa@3C86@ i = 1, 2, ..., 5, и соответствующие им гамильтоновы векторные поля h i Vec( T * M) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqabiaa=Hgada WgaaWcbaGaamyAaaqabaGccqGHiiIZcaqGwbGaaeyzaiaabogacaaI OaGaamivamaaCaaaleqabaGaaGOkaaaakiaad2eacaaIPaaaaa@4045@ .

Теорема 1 (Принцип максимума Понтрягина [6, 7]). Если управление u(t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhacaaIOa GaamiDaiaaiMcaaaa@3960@ и соответствующая траектория q(t), t[0,T], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadghacaaIOa GaamiDaiaaiMcacaaISaaccaGae8hiaaIaaGPaVlaadshacqGHiiIZ caaIBbGaaGimaiaaiYcacaWGubGaaGyxaiaacYcaaaa@43AE@ оптимальны, то существуют кривая λ t T q(t) * M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWG0baabeaakiabgIGiolaadsfadaqhaaWcbaGaamyCaiaa iIcacaWG0bGaaGykaaqaaiaaiQcaaaGccaWGnbaaaa@4059@ и число ν 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabe27aUHGaai ab=bcaGiabgsMiJkab=bcaGiaaicdaaaa@3BC3@ , для которых выполнены условия

λ ˙ t = u 1 (t) h 1 ( λ t )+ u 2 (t) h 2 ( λ t ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiqbeU7aSzaaca WaaSbaaSqaaiaadshaaeqaaOGaaGypaiaadwhadaWgaaWcbaGaaGym aaqabaGccaaIOaGaamiDaiaaiMcaieqacaWFObWaaSbaaSqaaiaaig daaeqaaOGaaGikaiabeU7aSnaaBaaaleaacaWG0baabeaakiaaiMca cqGHRaWkcaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshaca aIPaGaa8hAamaaBaaaleaacaaIYaaabeaakiaaiIcacqaH7oaBdaWg aaWcbaGaamiDaaqabaGccaaIPaGaaGilaaaa@5035@ (1)

u 1 (t) h 1 ( λ t )+ u 2 (t) h 2 ( λ t )=H( λ t )=(| h 1 |+| h 2 |)( λ t ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaWGObWaaSbaaSqa aiaaigdaaeqaaOGaaGikaiabeU7aSnaaBaaaleaacaWG0baabeaaki aaiMcacqGHRaWkcaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaa dshacaaIPaGaamiAamaaBaaaleaacaaIYaaabeaakiaaiIcacqaH7o aBdaWgaaWcbaGaamiDaaqabaGccaaIPaGaaGypaiaadIeacaaIOaGa eq4UdW2aaSbaaSqaaiaadshaaeqaaOGaaGykaiaai2dacaaIOaGaaG iFaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI8bGaey4kaSIaaGiF aiaadIgadaWgaaWcbaGaaGOmaaqabaGccaaI8bGaaGykaiaaiIcacq aH7oaBdaWgaaWcbaGaamiDaaqabaGccaaIPaGaaGilaaaa@6187@

λ t 0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWG0baabeaakiabgcMi5kaaicdacaaISaaaaa@3C22@

H( λ t )+ν0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeacaaIOa Gaeq4UdW2aaSbaaSqaaiaadshaaeqaaOGaaGykaiabgUcaRiabe27a UjabggMi6kaaicdacaaIUaaaaa@40F2@

Гамильтонова система принципа максимума Понтрягина (1) имеет четыре интеграла — функции Казимира на коалгебре Ли L * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYeadaahaa WcbeqaaiaaiQcaaaaaaa@37BA@ : h 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGinaaqabaaaaa@37DF@ , h 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGynaaqabaaaaa@37E0@ , E= h 3 2 2 + h 1 h 5 h 2 h 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweacaaI9a WaaSaaaeaacaWGObWaa0baaSqaaiaaiodaaeaacaaIYaaaaaGcbaGa aGOmaaaacqGHRaWkcaWGObWaaSbaaSqaaiaaigdaaeqaaOGaamiAam aaBaaaleaacaaI1aaabeaakiabgkHiTiaadIgadaWgaaWcbaGaaGOm aaqabaGccaWGObWaaSbaaSqaaiaaisdaaeqaaaaa@4447@ и гамильтониан H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeaaaa@36D5@ .

3. Анормальные траектории. Пусть ν=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabe27aUjaai2 dacaaIWaaaaa@3941@ .

Теорема 2. Оптимальные анормальные траектории имеют вид

u(t)const,u(t) 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhacaaIOa GaamiDaiaaiMcacqGHHjIUcaqGJbGaae4Baiaab6gacaqGZbGaaeiD aiaaiYcacaaMf8UaaGzbVhbbfv3ySLgzGueE0jxyaGqbaiab=vIiqj aadwhacaaIOaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaeyOhIuka beaakiabggMi6kaaigdacaaISaaaaa@52BE@

и все такие управления оптимальны.

Анормальные траектории суть однопараметрические подгруппы в M, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eacaGGSa aaaa@378A@ касающиеся распределения span( X 1 , X 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabohacaqGWb Gaaeyyaiaab6gacaaIOaGaamiwamaaBaaaleaacaaIXaaabeaakiaa iYcacaWGybWaaSbaaSqaaiaaikdaaeqaaOGaaGykaaaa@3F7E@ ; они задают оптимальный синтез на анормальном многообразии

A={ e u 1 X 1 + u 2 X 2 (Id)| u i }. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadgeacaaI9a GaaG4EaiaadwgadaahaaWcbeqaaiaadwhammaaBaaabaGaaGymaaqa baWccaWGybaddaWgaaqaaiaaigdaaeqaaSGaey4kaSIaamyDaWWaaS baaeaacaaIYaaabeaaliaadIfammaaBaaabaGaaGOmaaqabaaaaOGa aGikaiaabMeacaqGKbGaaGykaiaacYhaiiaacqWFGaaicqWFGaaica WG1bWaaSbaaSqaaiaadMgaaeqaaOGaeyicI48efv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqGFDeIucaaI9bGaaGOlaaaa@57D2@

4. Виды нормальных экстремальных дуг. Пусть ν=H( λ t )>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgkHiTiabe2 7aUjaai2dacaWGibGaaGikaiabeU7aSnaaBaaaleaacaWG0baabeaa kiaaiMcacaaI+aGaaGimaaaa@400B@ .

Экстремальная дуга λ t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWG0baabeaaaaa@38E1@ , tI=(α,β)[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacqGHii IZcaWGjbGaaGypaiaaiIcacqaHXoqycaaISaGaeqOSdiMaaGykaiab gkOimlaaiUfacaaIWaGaaGilaiaadsfacaaIDbaaaa@4586@ , называется

1) релейной дугой, если card{tI| h 1 h 2 ( λ t )=0}<, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabogacaqGHb GaaeOCaiaabsgacaaI7bGaamiDaiabgIGiolaadMeacaGG8baccaGa e8hiaaIae8hiaaIaamiAamaaBaaaleaacaaIXaaabeaakiaadIgada WgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaadsha aeqaaOGaaGykaiaai2dacaaIWaGaaGyFaiaaiYdacqGHEisPcaGGSa aaaa@4E06@

2) особой дугой, если выполняется одно из двух условий:

h 1 ( λ t )0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaadshaaeqa aOGaaGykaiabggMi6kaaicdaaaa@3EB1@ ( h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaaaaa@37DC@ -особая дуга) или h 2 ( λ t )0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaadshaaeqa aOGaaGykaiabggMi6kaaicdaaaa@3EB2@ ( h 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGOmaaqabaaaaa@37DD@ -особая дуга),

3) смешанной дугой, если она состоит из конечного числа релейных и особых дуг.

Замечание 1. Если h i ( λ t )| (α, β) 0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamyAaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaadshaaeqa aOGaaGykaiaaiYhadaWgaaWcbaGaaGikaiabeg7aHjaaiYcaiiaacq WFGaaicqaHYoGycaaIPaaabeaakiabgcMi5kaaicdacaGGSaaaaa@46F8@ то u i (t )| (α, β) s i :=sgn h i ( λ t )| (α, β) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaamyAaaqabaGccaaIOaGaamiDaiaaiMcacaaI8bWaaSbaaSqa aiaaiIcacqaHXoqycaaISaaccaGae8hiaaIaeqOSdiMaaGykaaqaba GccqGHHjIUcaWGZbWaaSbaaSqaaiaadMgaaeqaaOGaaGOoaiaai2da caqGZbGaae4zaiaab6gacaWGObWaaSbaaSqaaiaadMgaaeqaaOGaaG ikaiabeU7aSnaaBaaaleaacaWG0baabeaakiaaiMcacaaI8bWaaSba aSqaaiaaiIcacqaHXoqycaaISaGae8hiaaIaeqOSdiMaaGykaaqaba aaaa@57D6@ .

5. Особые дуги.

Теорема 3. Любая h1-особая дуга удовлетворяет одному из следующих условий:

а) h 1 = h 3 = h 4 = h 5 0, h 2 const0, | u 1 (t)| 1, u 2 s 2 {±1}; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaiqabaGaamiAam aaBaaaleaacaaIXaaabeaakiaai2dacaWGObWaaSbaaSqaaiaaioda aeqaaOGaaGypaiaadIgadaWgaaWcbaGaaGinaaqabaGccaaI9aGaam iAamaaBaaaleaacaaI1aaabeaakiabggMi6kaaicdacaaISaGaaGjb VlaadIgadaWgaaWcbaGaaGOmaaqabaGccqGHHjIUcaqGJbGaae4Bai aab6gacaqGZbGaaeiDaiabgcMi5kaaicdacaaISaaccaGae8hiaaIa eyiaIiIaaGiFaiaadwhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaam iDaiaaiMcacaaI8bGae8hiaaIaeyizImQaaGymaiaaiYcaaeaacaaM e8UaamyDamaaBaaaleaacaaIYaaabeaakiabggMi6kaadohadaWgaa WcbaGaaGOmaaqabaGccqGHiiIZcaaI7bGaeyySaeRaaGymaiaai2ha caGG7aaaaaa@6A44@

h 1 = h 3 0, h 5 h 4 0, h 4 0, h 2 const0, u 1 (t) s 2 h 5 h 4 , u 2 (t) s 2 {±1}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaiqabaGaamiAam aaBaaaleaacaaIXaaabeaakiaai2dacaWGObWaaSbaaSqaaiaaioda aeqaaOGaeyyyIORaaGimaiaaiYcacaaMf8+aaqWaaeaadaWcaaqaai aadIgadaWgaaWcbaGaaGynaaqabaaakeaacaWGObWaaSbaaSqaaiaa isdaaeqaaaaaaOGaay5bSlaawIa7aGGaaiab=bcaGiabgsMiJkaaic dacaaISaGaaGzbVlaadIgadaWgaaWcbaGaaGinaaqabaGccqGHGjsU caaIWaGaaGilaiaaysW7caWGObWaaSbaaSqaaiaaikdaaeqaaOGaey yyIORaae4yaiaab+gacaqGUbGaae4CaiaabshacqGHGjsUcaaIWaGa aGilaaqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDai aaiMcacqGHHjIUcqGHsislcaWGZbWaaSbaaSqaaiaaikdaaeqaaOWa aSaaaeaacaWGObWaaSbaaSqaaiaaiwdaaeqaaaGcbaGaamiAamaaBa aaleaacaaI0aaabeaaaaGccaGGSaGae8hiaaIae8hiaaIaamyDamaa BaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiabggMi6kaado hadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZcaaI7bGaeyySaeRaaGym aiaai2hacaaIUaaaaaa@7BF1@

Аналогичное описание имеет место для h 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGOmaaqabaaaaa@37DD@ -особых дуг.

Следствие 1. Все особые траектории оптимальны.

Для описания множества достижимости вдоль особых траекторий применяется принцип максимума Понтрягина в геометрической постановке [6]. Исследование всех возможных фазовых портретов вертикальной подсистемы нормальной гамильтоновой системы позволяет сформулировать следующую теорему об управлении для особых траекторий, приходящих на границу множества достижимости.

Теорема 4. h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaaaaa@37DC@ -Особые траектории с u 2 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaGOmaaqabaGccqGHHjIUcaaIXaGaaiilaaaa@3B28@ концы которых формируют множество, содержащее границу множества достижимости, имеют один из двух типов:

а) управление u 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaGymaaqabaaaaa@37E9@ кусочно-постоянное с двумя переключениями и соответствующими значениями ±1, u 1 0 , ±1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgglaXkaaig dacaaISaaccaGae8hiaaIaamyDamaaDaaaleaacaaIXaaabaGaaGim aaaakiab=XcaSiab=bcaGiabgglaXkaaigdaaaa@4127@ либо ±1, u 1 0 , 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgglaXkaaig dacaaISaaccaGae8hiaaIaamyDamaaDaaaleaacaaIXaaabaGaaGim aaaakiaaiYcacqWFGaaicqWItisBcaaIXaaaaa@4045@ без ограничений на временные промежутки, где u 1 0 1,1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhadaqhaa WcbaGaaGymaaqaaiaaicdaaaGccqGHiiIZdaWadaqaaiabgkHiTiaa igdacaGGSaGaaGymaaGaay5waiaaw2faaaaa@3F37@ [1, 1];

б) управление u 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaGymaaqabaaaaa@37E9@ кусочно-постоянное c соответствующими значениями ±1, 1, ±1, 1, ... MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaysW7cqGHXc qScaaIXaGaaGilaGGaaiab=bcaGiabloHiTjaaigdacaaISaGae8hi aaIaeyySaeRaaGymaiaaiYcacqWFGaaicqWItisBcaaIXaGaaGilai ab=bcaGiaac6cacaGGUaGaaiOlaaaa@48CF@ и временными промежутками T 0 , T 1 , T 2 , T 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGimaaqabaGccaaISaaccaGae8hiaaIaamivamaaBaaaleaa caaIXaaabeaakiaaiYcacqWFGaaicaWGubWaaSbaaSqaaiaaikdaae qaaOGaaGilaiab=bcaGiaadsfadaWgaaWcbaGaaG4maaqabaGccaaI Saaaaa@4263@ при этом T3T1 и T0T2.

Проекция множества достижимости вдоль h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaaaaa@37DC@ -особых траекторий с u 2 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhadaWgaa WcbaGaaGOmaaqabaGccqGHHjIUcaaIXaaaaa@3A78@ на пространство (x, z, v) приведена на рис. 1.

6. Релейный поток.Если h 1 h 2 ( λ t )| (α, β) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaGccaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiabeU7aSnaaBaaaleaacaWG0baabeaakiaaiMcacaaI8bWaaSbaaS qaaiaaiIcacqaHXoqycaaISaaccaGae8hiaaIaeqOSdiMaaGykaaqa baGccqGHGjsUcaaIWaaaaa@47F4@ , то u(t )| (α, β) ( s 1 , s 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadwhacaaIOa GaamiDaiaaiMcacaaI8bWaaSbaaSqaaiaaiIcacqaHXoqycaaISaac caGae8hiaaIaeqOSdiMaaGykaaqabaGccqGHHjIUcaaIOaGaam4Cam aaBaaaleaacaaIXaaabeaakiaaiYcacaWGZbWaaSbaaSqaaiaaikda aeqaaOGaaGykaaaa@487D@ , поэтому релейные экстремали удовлетворяют следующей гамильтоновой системе с гамильтонианом H=| h 1 |+| h 2 | MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeacaaI9a GaaGiFaiaadIgadaWgaaWcbaGaaGymaaqabaGccaaI8bGaey4kaSIa aGiFaiaadIgadaWgaaWcbaGaaGOmaaqabaGccaaI8baaaa@4053@ :

h ˙ 1 = s 2 h 3 , h ˙ 2 = s 1 h 3 , h ˙ 3 = s 1 h 4 + s 2 h 5 , h ˙ 4 = h ˙ 5 =0, q ˙ = s 1 X 1 + s 2 X 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabeqafeaaaa qaaiqadIgagaGaamaaBaaaleaacaaIXaaabeaakiaai2dacqGHsisl caWGZbWaaSbaaSqaaiaaikdaaeqaaOGaamiAamaaBaaaleaacaaIZa aabeaakiaaiYcaaeaaceWGObGbaiaadaWgaaWcbaGaaGOmaaqabaGc caaI9aGaam4CamaaBaaaleaacaaIXaaabeaakiaadIgadaWgaaWcba GaaG4maaqabaGccaaISaaabaGabmiAayaacaWaaSbaaSqaaiaaioda aeqaaOGaaGypaiaadohadaWgaaWcbaGaaGymaaqabaGccaWGObWaaS baaSqaaiaaisdaaeqaaOGaey4kaSIaam4CamaaBaaaleaacaaIYaaa beaakiaadIgadaWgaaWcbaGaaGynaaqabaGccaaISaaabaGabmiAay aacaWaaSbaaSqaaiaaisdaaeqaaOGaaGypaiqadIgagaGaamaaBaaa leaacaaI1aaabeaakiaai2dacaaIWaGaaGilaaqaaiqadghagaGaai aai2dacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaamiwamaaBaaaleaa caaIXaaabeaakiabgUcaRiaadohadaWgaaWcbaGaaGOmaaqabaGcca WGybWaaSbaaSqaaiaaikdaaeqaaOGaaGOlaaaaaaa@62E5@ (2)

Учитывая симметрию (λ, q)(kλ, q) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiIcacqaH7o aBcaaISaaccaGae8hiaaIaamyCaiaaiMcacqWIMgsycaaIOaGaam4A aiabeU7aSjaaiYcacqWFGaaicaWGXbGaaGykaaaa@43CF@ , k>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadUgacaaI+a GaaGimaaaa@387A@ , будем считать далее, что H( λ t )1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIeacaaIOa Gaeq4UdW2aaSbaaSqaaiaadshaaeqaaOGaaGykaiabggMi6kaaigda aaa@3DA1@ .

Введём на квадрате {( h 1 , h 2 )|H(λ)=1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUhacaaIOa GaamiAamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGObWaaSbaaSqa aiaaikdaaeqaaOGaaGykaiaacYhacaWGibGaaGikaiabeU7aSjaaiM cacaaI9aGaaGymaiaai2haaaa@4454@ угловую координату θ/2π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXjabgI Gioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xh HiLaaG4laiaaikdacqaHapaCcqWFKeIwaaa@4850@ :

h 1 =sgn(cosθ) cos 2 θ, h 2 =sgn(sinθ) sin 2 θ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaGccaaI9aGaae4CaiaabEgacaqGUbGaaGikaiGa cogacaGGVbGaai4CaiabeI7aXjaaiMcaciGGJbGaai4Baiaacohada ahaaWcbeqaaiaaikdaaaGccqaH4oqCcaaISaGaaGzbVlaadIgadaWg aaWcbaGaaGOmaaqabaGccaaI9aGaae4CaiaabEgacaqGUbGaaGikai GacohacaGGPbGaaiOBaiabeI7aXjaaiMcaciGGZbGaaiyAaiaac6ga daahaaWcbeqaaiaaikdaaaGccqaH4oqCcaaIUaaaaa@5ACF@

Тогда вертикальная часть системы (2) принимает форму

θ ˙ = h 3 |sin2θ| ,θ πn 2 , h ˙ 3 = s 1 h 4 + s 2 h 5 , s 1 =sgn cosθ, s 2 =sgn sinθ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabeqaceaaae aacuaH4oqCgaGaaiaai2dadaWcaaqaaiaadIgadaWgaaWcbaGaaG4m aaqabaaakeaacaaI8bGaci4CaiaacMgacaGGUbGaaGOmaiabeI7aXj aaiYhaaaGaaGilaiaaywW7cqaH4oqCcqGHGjsUdaWcaaqaaiabec8a Wjaad6gaaeaacaaIYaaaaiaaiYcaaeaaceWGObGbaiaadaWgaaWcba GaaG4maaqabaGccaaI9aGaam4CamaaBaaaleaacaaIXaaabeaakiaa dIgadaWgaaWcbaGaaGinaaqabaGccqGHRaWkcaWGZbWaaSbaaSqaai aaikdaaeqaaOGaamiAamaaBaaaleaacaaI1aaabeaakiaaiYcacaaM f8Uaam4CamaaBaaaleaacaaIXaaabeaakiaai2dacaqGZbGaae4zai aab6gaiiaacqWFGaaiciGGJbGaai4BaiaacohacqaH4oqCcaaISaGa aGzbVlaadohadaWgaaWcbaGaaGOmaaqabaGccaaI9aGaae4CaiaabE gacaqGUbGae8hiaaIaci4CaiaacMgacaGGUbGaeqiUdeNaaGOlaaaa aaa@71EA@ (3)

Система (3) сохраняется группой симметрий квадрата {( h 1 , h 2 )|H=1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUhacaaIOa GaamiAamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGObWaaSbaaSqa aiaaikdaaeqaaOGaaGykaiaacYhacaWGibGaaGypaiaaigdacaaI9b aaaa@413B@ . Факторизуя по действию этой группы, можно свести рассмотрение системы (3) к фундаментальной области этой группы {( h 4 , h 5 ) 2 | h 4 h 5 0} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUhacaaIOa GaamiAamaaBaaaleaacaaI0aaabeaakiaaiYcacaWGObWaaSbaaSqa aiaaiwdaaeqaaOGaaGykaiabgIGioprr1ngBPrwtHrhAYaqeguuDJX wAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaacaaIYaaaaOGa aiiFaGGaaiab+bcaGiab+bcaGiaadIgadaWgaaWcbaGaaGinaaqaba GccqGHLjYScaWGObWaaSbaaSqaaiaaiwdaaeqaaOGaeyyzImRaaGim aiaai2haaaa@55BC@ .

На основе исследования фазового портрета системы (3) строится релейный поток.

Предложение 1. Пусть λ L * {H=1} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSjabgI GiolaadYeadaahaaWcbeqaaiaaiQcaaaGccqGHPiYXcaaI7bGaamis aiaai2dacaaIXaGaaGyFaaaa@40F5@ и h 4 h 5 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGinaaqabaGccqGHLjYScaWGObWaaSbaaSqaaiaaiwdaaeqa aOGaeyyzImRaaGimaaaa@3E11@ .

Если E ≠ h4 > h5 или h4 = h5 = 0, то для любого t>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacaaI+a GaaGimaaaa@3883@ существует единственное решение λ t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWG0baabeaaaaa@38E1@ системы (3), удовлетворяющее начальному условию λ 0 =λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIWaaabeaakiaai2dacqaH7oaBaaa@3B27@ , и, соответственно, единственная релейная траектория q(t)=π( λ t )=:Exp(λ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadghacaaIOa GaamiDaiaaiMcacaaI9aGaeqiWdaNaaGikaiabeU7aSnaaBaaaleaa caWG0baabeaakiaaiMcacaaI9aGaaGOoaiaabweacaqG4bGaaeiCai aaiIcacqaH7oaBcaaISaGaamiDaiaaiMcaaaa@4931@ .

Если E= h 4 > h 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweacaaI9a GaamiAamaaBaaaleaacaaI0aaabeaakiaai6dacaWGObWaaSbaaSqa aiaaiwdaaeqaaaaa@3C1A@ , то для любого T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfacaaI+a GaaGimaaaa@3863@ существует конечное число решений { λ t 1 ,, λ t N } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUhacqaH7o aBdaqhaaWcbaGaamiDaaqaaiaaigdaaaGccaaISaGaaGPaVlaaykW7 cqWIMaYscaaISaGaaGPaVlaaykW7cqaH7oaBdaqhaaWcbaGaamiDaa qaaiaad6eaaaGccaaI9baaaa@4824@ , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacqGHii IZcaaIBbGaaGimaiaaiYcacaWGubGaaGyxaaaa@3C9A@ , системы (3) с начальным условием λ 0 1 == λ 0 N =λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaDa aaleaacaaIWaaabaGaaGymaaaakiaai2dacqWIMaYscaaI9aGaeq4U dW2aa0baaSqaaiaaicdaaeaacaWGobaaaOGaaGypaiabeU7aSbaa@420B@ , и, соответственно, конечное число релейных траекторий { q 1 (t),, q N (t)}={π( λ t 1 ),,π( λ t N )}=:Exp(λ,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaiUhacaWGXb WaaWbaaSqabeaacaaIXaaaaOGaaGikaiaadshacaaIPaGaaGilaiab lAciljaaiYcacaWGXbWaaWbaaSqabeaacaWGobaaaOGaaGikaiaads hacaaIPaGaaGyFaiaai2dacaaI7bGaeqiWdaNaaGikaiabeU7aSnaa DaaaleaacaWG0baabaGaaGymaaaakiaaiMcacaaISaGaeSOjGSKaaG ilaiabec8aWjaaiIcacqaH7oaBdaqhaaWcbaGaamiDaaqaaiaad6ea aaGccaaIPaGaaGyFaiaai2dacaaI6aGaaeyraiaabIhacaqGWbGaaG ikaiabeU7aSjaaiYcacaWG0bGaaGykaiaac6caaaa@5FFC@

Определим время разреза вдоль релейных траекторий:

t cut (λ):=sup{T>0| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaae4yaiaabwhacaqG0baabeaakiaaiIcacqaH7oaBcaaIPaGa aGOoaiaai2daciGGZbGaaiyDaiaacchacaaI7bGaamivaiaai6daca aIWaGaaiiFaaaa@45F6@ хотя бы одна из траекторий Exp(λ,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaabweacaqG4b GaaeiCaiaabIcacqaH7oaBcaqGSaGaamiDaiaacMcaaaa@3D72@ оптимальна при t[0,T]}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacqGHii IZcaaIBbGaaGimaiaaiYcacaWGubGaaGyxaiaai2hacaaIUaaaaa@3E59@

 

Рис. 1. Проекция множества достижимости вдоль особых траекторий на гиперплоскость (x, z, v).

 

7. Оптимальность релейных траекторий.

7.1. Релейные траектории с малой энергией E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweaaaa@36D2@ .

Теорема 5. Если релейная экстремаль λ t ,t[0,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWG0baabeaakiaacYcacaaMc8UaaGzaVlaaykW7caWG0bGa eyicI4SaaG4waiaaicdacaaISaGaey4kaSIaeyOhIuQaaGykaaaa@4613@ , удовлетворяет неравенству

min(| h 4 |, | h 5 |)<Emax(| h 4 |, | h 5 |), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiGac2gacaGGPb GaaiOBaiaaiIcacqGHsislcaaI8bGaamiAamaaBaaaleaacaaI0aaa beaakiaaiYhacaaISaaccaGae8hiaaIae8hiaaIaeyOeI0IaaGiFai aadIgadaWgaaWcbaGaaGynaaqabaGccaaI8bGaaGykaiaaiYdacaWG fbGaeyizImQaciyBaiaacggacaGG4bGaaGikaiabgkHiTiaaiYhaca WGObWaaSbaaSqaaiaaisdaaeqaaOGaaGiFaiaaiYcacqWFGaaicqWF GaaicqGHsislcaaI8bGaamiAamaaBaaaleaacaaI1aaabeaakiaaiY hacaaIPaGaaGilaaaa@5A67@

то она оптимальна, т.е. t cut ( λ 0 )=+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaae4yaiaabwhacaqG0baabeaakiaaiIcacqaH7oaBdaWgaaWc baGaaGimaaqabaGccaaIPaGaaGypaiabgUcaRiabg6HiLcaa@412F@ .

7.2. Релейные траектории с большой энергией E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweaaaa@36D2@ .

С помощью необходимых условий оптимальности [5, 8] доказана следующая оценка.

Теорема 6. Если E>max(| h 4 |, | h 5 |) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadweacaaI+a GaciyBaiaacggacaGG4bGaaGikaiabgkHiTiaaiYhacaWGObWaaSba aSqaaiaaisdaaeqaaOGaaGiFaiaaiYcaiiaacqWFGaaicqWFGaaicq GHsislcaaI8bGaamiAamaaBaaaleaacaaI1aaabeaakiaaiYhacaaI Paaaaa@47D2@ , то оптимальные релейные траектории имеют не более 11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaigdacaaIXa aaaa@377E@ переключений. В частности, в этом случае t cut (λ)<+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaae4yaiaabwhacaqG0baabeaakiaaiIcacqaH7oaBcaaIPaGa aGipaiabgUcaRiabg6HiLcaa@403E@ .

8. Общий вид нормальных экстремалей.

Предложение 2. Для любой нормальной экстремали λ t , t[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWG0baabeaakiaaiYcaiiaacqWFGaaicaWG0bGaeyicI4Sa aG4waiaaicdacaaISaGaamivaiaai2faaaa@4102@ , существуют моменты времени 0= t 0 < t 1 < t 2 << t n =T, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaicdacaaI9a GaamiDamaaBaaaleaacaaIWaaabeaakiaaiYdacaWG0bWaaSbaaSqa aiaaigdaaeqaaOGaaGipaiaadshadaWgaaWcbaGaaGOmaaqabaGcca aI8aGaeSOjGSKaaGipaiaadshadaWgaaWcbaGaamOBaaqabaGccaaI 9aGaamivaiaacYcaaaa@45F3@ для которых выполняются условия

1) h 1 h 2 ( λ t i )=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaGccaWGObWaaSbaaSqaaiaaikdaaeqaaOGaaGik aiabeU7aSnaaBaaaleaacaWG0bWaaSbaaeaacaWGPbaabeaaaeqaaO GaaGykaiaai2dacaaIWaaaaa@409D@ , i=1, 2, , n1; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadMgacaaI9a GaaGymaiaaiYcaiiaacqWFGaaicaaIYaGaaiilaiab=bcaGiablAci ljaaiYcacqWFGaaicaWGUbGaeyOeI0IaaGymaiaacUdaaaa@4225@

2) i=0,1,,n1 h 1 h 2 ( λ t )| ( t i , t i+1 ) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgcGiIiaadM gacaaI9aGaaGimaiaaiYcacaaIXaGaaiilaiablAciljaaiYcacaWG UbGaeyOeI0IaaGymaiaaywW7caWGObWaaSbaaSqaaiaaigdaaeqaaO GaamiAamaaBaaaleaacaaIYaaabeaakiaaiIcacqaH7oaBdaWgaaWc baGaamiDaaqabaGccaaIPaGaaGiFamaaBaaaleaacaaIOaGaamiDaW WaaSbaaeaacaWGPbaabeaaliaaiYcacaWG0baddaWgaaqaaiaadMga cqGHRaWkcaaIXaaabeaaliaaiMcaaeqaaOGaeyiyIKRaaGimaiaayw W7aaa@56AF@ или

h 1 ( λ t )| [ t i , t i+1 ] 0, h 2 ( λ t )| ( t i , t i+1 ) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaadshaaeqa aOGaaGykaiaaiYhadaWgaaWcbaGaaG4waiaadshammaaBaaabaGaam yAaaqabaWccaaISaGaamiDaWWaaSbaaeaacaWGPbGaey4kaSIaaGym aaqabaWccaaIDbaabeaakiabggMi6kaaicdacaaISaGaaGzbVlaadI gadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaa dshaaeqaaOGaaGykaiaaiYhadaWgaaWcbaGaaGikaiaadshammaaBa aabaGaamyAaaqabaWccaaISaGaamiDaWWaaSbaaeaacaWGPbGaey4k aSIaaGymaaqabaWccaaIPaaabeaakiabgcMi5kaaicdacaaMf8oaaa@5DF6@ или

h 2 ( λ t )| [ t i , t i+1 ] 0, h 1 ( λ t )| ( t i , t i+1 ) 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGOmaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaadshaaeqa aOGaaGykaiaaiYhadaWgaaWcbaGaaG4waiaadshammaaBaaabaGaam yAaaqabaWccaaISaGaamiDaWWaaSbaaeaacaWGPbGaey4kaSIaaGym aaqabaWccaaIDbaabeaakiabggMi6kaaicdacaaISaGaaGzbVlaadI gadaWgaaWcbaGaaGymaaqabaGccaaIOaGaeq4UdW2aaSbaaSqaaiaa dshaaeqaaOGaaGykaiaaiYhadaWgaaWcbaGaaGikaiaadshammaaBa aabaGaamyAaaqabaWccaaISaGaamiDaWWaaSbaaeaacaWGPbGaey4k aSIaaGymaaqabaWccaaIPaaabeaakiabgcMi5kaaicdaaaa@5C68@ .

9. Смешанные экстремальные дуги.

Предложение 3. Пусть h 4 h 5 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGinaaqabaGccqGHLjYScaWGObWaaSbaaSqaaiaaiwdaaeqa aOGaeyyzImRaaGimaaaa@3E11@ . Особые экстремальные дуги могут примыкать к релейным дугам только в точках, удовлетворяющих следующим условиям:

1) θ= 3π 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXjaai2 dadaWcaaqaaiaaiodacqaHapaCaeaacaaIYaaaaaaa@3BCB@ , h 3 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaG4maaqabaGccaaI9aGaaGimaaaa@3969@ , 0< h 5 h 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaicdacaaI8a GaamiAamaaBaaaleaacaaI1aaabeaarmqr1ngBPrgitLxBI9gBaGqb aOGae8hzImQaamiAamaaBaaaleaacaaI0aaabeaakiaacYcaaaa@42B6@

2) θ=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeI7aXjaai2 dacaaIWaaaaa@393F@ , h 3 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaG4maaqabaGccaaI9aGaaGimaaaa@3969@ , 0< h 5 = h 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbbf9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaicdacaaI8a GaamiAamaaBaaaleaacaaI1aaabeaakiaai2dacaWGObWaaSbaaSqa aiaaisdaaeqaaaaa@3C08@ .

С помощью необходимого условия оптимальности [5, 8] доказана следующая оценка.

Теорема 7. Оптимальные смешанные управления имеют не более 13 переключений.

Заключение. В данной работе описана структура экстремальных траекторий в левоинвариантной l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadYgadaqhaa WcbaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaeaaaaaaaa@3D4D@ -субфинслеровой задаче на группе Картана и получены оценки числа переключений на оптимальных траекториях. Ряд важных вопросов по этой задаче остаётся открытым:

1) точное описание времени разреза и множества разреза,

2) структура и регулярность субфинслеровой сферы.

Этим вопросам будут посвящены дальнейшие работы.

Авторы выражают благодарность Энрико Ле Донне (Enrico Le Donne) за обсуждения задачи.

Исследование выполнено за счёт гранта Российского научного фонда (проект 17–11–01387) в Институте программных систем им. А.К. Айламазяна Российской Академии наук.

×

About the authors

A. A. Ardentov

Ailamazyan Program Systems Institute of the Russian Academy of Sciences

Author for correspondence.
Email: aaa@pereslavl.ru
Russian Federation, Veskovo Pereslavsky district, Yaroslavl region

Yu. L. Sachkov

Ailamazyan Program Systems Institute of the Russian Academy of Sciences

Email: aaa@pereslavl.ru
Russian Federation, Veskovo Pereslavsky district, Yaroslavl region

References

  1. Pansu Р. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un // Ann. Math. (2) 1989. V. 128. № 1. Р. 1–60.
  2. Берестовский В.Н. Однородные пространства с внутренней метрикой. II // Сиб. мат. журн. 1989. Т. 30. № 2. С. 14–28; 225.
  3. Boscain U., Chambrion Th., Charlot G. Nonisotropic 3-Level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy // Discrete Contin. Dyn. Syst. Ser. B. 2005. V. 5. № 4. P. 957–990.
  4. Busemann H. The isoperimetric Рroblem in the Minkowski Plane // AJM. 1947. V. 69. P. 863–871.
  5. Barilari D., Boscain U., Le Donne E., Sigalotti M. Sub-Finsler Structures from the Time-Optimal Control Viewpoint for Some Nilpotent Distributions // J. Dyn. Control Syst. 2017. V. 23. P. 547.
  6. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. М.: Физматлит, 2005.
  7. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1961.
  8. Agrachev A.A., Gamkrelidze R.V. Symplectic Geo- metry for Optimal Control. Nonlinear Control-lability and Optimal Control. Monogr. Text-books Pure Appl. Math. N.Y.: Dekker, 1990. V. 133. P. 263–277.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The projection of the reachable set along singular trajectories onto the hyperplane (x, z, v).

Download (1MB)

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies