Sub-Finsler problem on Cartan group

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Left invariant l-infinity sub-Finsler problem on Cartan group is considered as time-optimal control problem. We describe abnormal and singular normal trajectories, then prove that all such trajectories are optimal. We construct the bang-bang flow and obtain upper bounds on the number of switchings on bang-bang and mixed minimizers.

Full Text

Restricted Access

About the authors

A. A. Ardentov

Ailamazyan Program Systems Institute of the Russian Academy of Sciences

Author for correspondence.
Email: aaa@pereslavl.ru
Russian Federation, Veskovo Pereslavsky district, Yaroslavl region

Yu. L. Sachkov

Ailamazyan Program Systems Institute of the Russian Academy of Sciences

Email: aaa@pereslavl.ru
Russian Federation, Veskovo Pereslavsky district, Yaroslavl region

References

  1. Pansu Р. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un // Ann. Math. (2) 1989. V. 128. № 1. Р. 1–60.
  2. Берестовский В.Н. Однородные пространства с внутренней метрикой. II // Сиб. мат. журн. 1989. Т. 30. № 2. С. 14–28; 225.
  3. Boscain U., Chambrion Th., Charlot G. Nonisotropic 3-Level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy // Discrete Contin. Dyn. Syst. Ser. B. 2005. V. 5. № 4. P. 957–990.
  4. Busemann H. The isoperimetric Рroblem in the Minkowski Plane // AJM. 1947. V. 69. P. 863–871.
  5. Barilari D., Boscain U., Le Donne E., Sigalotti M. Sub-Finsler Structures from the Time-Optimal Control Viewpoint for Some Nilpotent Distributions // J. Dyn. Control Syst. 2017. V. 23. P. 547.
  6. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. М.: Физматлит, 2005.
  7. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1961.
  8. Agrachev A.A., Gamkrelidze R.V. Symplectic Geo- metry for Optimal Control. Nonlinear Control-lability and Optimal Control. Monogr. Text-books Pure Appl. Math. N.Y.: Dekker, 1990. V. 133. P. 263–277.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The projection of the reachable set along singular trajectories onto the hyperplane (x, z, v).

Download (1MB)

Copyright (c) 2019 Russian Academy of Sciences