Russian hydropower under the global climate change

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the climate change in Russia on the operation of hydroelectric power plants during the 21st century is considered. For obtaining quantitative assessments, the results yielded by global climatic models for river runoff were subjected to ensemble averaging. In addition to the standard RCP climatic scenarios, the MPEI scenario is considered, the fundamental distinctive feature of which is that the most likely development trajectories are selected. It is found that the choice of a scenario has an essential effect on both the qualitative pattern of river runoff changes over the territory and on the quantitative characteristics of this process.An integral assessment for the change in the hydroelectric power plant outputs due to climate change is made.

Full Text

Restricted Access

About the authors

V. V. Klimenko

National Research University Moscow Power Engineering Institute

Author for correspondence.
Email: nilgpe@mpei.ru
Russian Federation, Moscow

E. V. Fedotova

National Research University Moscow Power Engineering Institute

Email: e.v.kasilova@mpei.ru
Russian Federation, Moscow

References

  1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley. Eds. Cambridge: Cambridge Univ. Press, 2013. 1552 p.
  2. Второй оценочный доклад об изменениях климата и их последствиях на террито-рии РФ / Под ред. В.М. Катцова, С.М. Семенова. М.: Росгидромет, 2014.
  3. Данные NCDC: https://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products/
  4. Held I.M., Soden B.J. // J. Climate. 2006. V. 19. P. 5686–5699.
  5. Клименко В.В., Клименко А.В., Микушина О.В., Терешин А.Г. // Теплоэнергетика. 2016. № 9. С. 1–6.
  6. Клименко В.В., Клименко А.В., Терешин А.Г. // Изв. РАН. Физика атмосферы и океа-на. 2015. Т. 51. № 2. С. 158–168.
  7. Попова В.А., Георгиади А.Г. // Изв. РАН. Сер. геогр. 2017. № 2. С. 47–59.
  8. Milly P.C.D., Betancourt J., Falkenmark M., Hirsch R.M., Kundzewicz Z.W., Let-tenmaier D.P., Stouffer R.J. // Science. 2008. V. 319. P. 573–574.
  9. Катцов В.М., Говоркова В.А. // Тр. ГГО им. А.И. Воей- кова. 2013. В. 569. С. 75–97.
  10. Акентьева Е.М., Сидоренко Г.И., Тюсов Г.А. // Тр. ГГО им. А.И. Воейкова. 2014. В. 570. С. 95–105.
  11. Калугин А.С. Mодель формирования стока реки Амур и ее применение для оценки возможных изменений водного режима. Дис. канд. геогр. наук. М., 2016.
  12. Георгиевский М.В., Голованов О.Ф. Экстремальные паводки в бассейне Амура: гидрологические аспекты. СПб.: ФГБУ “ГГИ”, 2015. С. 153–170.
  13. Knutti R. IPCC Working Group I AR5 snapshot. World Data Center for Climate. 2014. doi: 10.1594/WDCC/ETHr4.
  14. GRDC Timeseries Data. Global Runoff Data Centre. Koblenz: Federal Inst. Hydrol., 2017.
  15. Gudmundsson L., Seneviratne S.I. // Earth Syst. Sci. Data. 2016. V. 8. P. 279–295.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The change in average annual precipitation during global warming by 1oC (the period 1997–2016 compared to the period 1911–1930) is the authors' calculation according to [3].

Download (1MB)
3. Fig. 2. Trends in the mean global temperature in the 21st century (relative to the level of 1986–2005) under different scenarios of anthropogenic impact: data [1] for rcp scenarios; the results of work [5] for the prediction of MEI.

Download (155KB)
4. Fig. 3. The relative change in the average annual river runoff in northern Eurasia in 2045–2054. in relation to the period of 2007–2016: a - according to the rcp 2.6 scenario, b - according to the rcp 4.5 scenario, and c - according to the MEI scenario.

Download (1MB)

Copyright (c) 2019 Russian Academy of Sciences