Heat capacity and thermal expansion of yttrium tantalate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The isobaric heat capacities of two monoclinic (M' and M) modifications of yttrium orthotantalate at temperatures 5–1300 K have been measured by the adiabatic and differential scanning calorimetry methods. It has been demonstrated that the difference in structure between the crystal lattices of M' and M has small effect in the heat capacity, and the difference between the heat capacities of these phases Cp(M)−Cp(M') is small, always positive, and increases in the range of the lowest temperatures. The unit cell parameters of M-YTaO4 have been determined as a function of temperature in the range 300–1173 K.

Full Text

Restricted Access

About the authors

A. V. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: guskov@igic.ras.ru
Russian Federation, Moscow

A. A. Ashmarin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, Moscow

V. N. Guskov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, Moscow

E. G. Sazonov

LLC “Technological systems of protective coatings”

Email: guskov@igic.ras.ru
Russian Federation, Moscow

K. S. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, Moscow

V. M. Novotortsev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: guskov@igic.ras.ru
Russian Federation, Moscow

References

  1. Wang J., Chong X.Y., Zhou R., Feng J. // Scr. Materialia. 2017. V. 126. P. 24. doi: 10.1016/j.scritamat.2016.08.019.
  2. Feng J., Shian S., Xiao B, Clarke D.R. // Phys. Rev. 2014. B. V. 90. P. 094102-1. doi: 10.1103/PhysRevB.90.094102.
  3. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
  4. Mather S. A., Davies P.K. // J. Amer. Ceram.Soc. 1995. V. 78. P. 273–274.
  5. Рюмин М.А., Сазонов Е.Г., Гуськов В.Н. и др. // Неорган. материалы. 2017. Т. 53. С. 737. doi: 10.7868/S0002337X17070120.
  6. Рюмин М.А., Сазонов Е.Г., Гуськов В.Н. и др. //Неорган. материалы. 2016. Т. 52. С. 1223. doi: 10.7868/S0002337X16110142.
  7. Wolten G.M. // Acta Crystallogr. 1967. V. 23. P. 939. doi: 10.1107/S0365110X67004098.
  8. ICCD PDF 2 # 24–1415
  9. Shian S., Sarin P., Gurak M., Baram M., Kriven W.M., Clarke D.R. // Acta Materialia. 2014. V. 69. P. 196. doi: 10.1016/j.actamat.2014.01.054.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The difference between the low-temperature heat capacities M- and M'-YTaO4.

Download (66KB)
3. Fig. 2. Temperature dependence of the parameters of the M-YTaO4 crystal cell: 1 — data [9], 2, 3 — this work.

Download (67KB)

Copyright (c) 2019 Russian Academy of Sciences