Intramolecular mobility affects the energy migration from quantum dots to reaction centers of photosynthesizing bacterium rb. Sphaeroides
- Authors: Krasilnikov P.M.1, Lukashev E.P.1, Knox P.P.1, Seyfullina N.K.1, Rubin A.B.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 484, No 2 (2019)
- Pages: 233-237
- Section: Biochemistry, biophysics, molecular biology
- URL: https://journals.eco-vector.com/0869-5652/article/view/11739
- DOI: https://doi.org/10.31857/S0869-56524842233-237
- ID: 11739
Cite item
Abstract
The temperature dependence of the efficiency of energy migration from the CdSe/CdS/ZnS quantum dots (QDs, a fluorescence maximum at 580 nm) to the reaction centers (RCs) of the bacteria Rb.sphaeroides is practically constant over the temperature range from 100 to ~230–240 K but then decreases 2,5–3 times as temperature further increases to 310 K. The analysis of this dependence on the basis of Forster’s theory showed that the major changes in the energy transfer efficiency are associated with the temperature change in the quantum yield of QD fluorescence, which is due to the activation of intramolecular mobility in the RC structure.
Full Text

About the authors
P. M. Krasilnikov
Lomonosov Moscow State University
Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991
E. P. Lukashev
Lomonosov Moscow State University
Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991
P. P. Knox
Lomonosov Moscow State University
Author for correspondence.
Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991
N. Kh. Seyfullina
Lomonosov Moscow State University
Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991
A. B. Rubin
Lomonosov Moscow State University
Email: knox@biophys.msu.ru
Corresponding Member of the RAS
Russian Federation, 1, Leninskie gory, Moscow, 119991References
- Lukashev E.P., Knox P.P., Gorokhov V.V., et al. // J. Photochem. Photobiol. B: Biol. 2016. V. 164. P. 73–82.
- Lukashev E.P., Oleinikov I.P., Knox P.P., et al. // Biophysics. 2017. V. 62. P. 722–727.
- Wraight C.A., Clayton R.K. // Biochim. Biophys. Acta. 1973. V. 333. P. 246–260.
- Захарова Н.И., Чурбанова И.Ю. // Биохимия. 2000. Т. 65. С. 181–193.
- Doster W., Cusack S., Petry W. // Nature. 1989. V. 337. P. 754–756.
- Pieper J., Hauss T., Buchsteiner A., et al. // Biochem. istry. 2007. V. 46. P. 11 398–11 409.
- Кононенко А.А., Нокс П.П., Чаморовский С.К. и др. // Хим. физика. 1986. Т. 5. С. 795–804.
- Агранович В.М., Галанин М.Д. Перенос энергии электронного возбуждения в конденсированных средах. М.: Наука, 1978. 384 с.
- Красильников П.М., Зленко Д.В., Стадничук И.Н. // Компьют. исслед. и моделирование. 2015. Т. 7. С. 125–144.
- Физические величины. Справочник/ Под ред. И.С. Григорьева, Е.З. Михайлова. М.: Энергоатом- издат, 1991. 1232 с.
- Гольданский В.И., Крупянский Ю.Ф., Шайтан К.В., Рубин А.Б. // Биофизика. 1987. Т. 32. С. 761–774.
- Cordier F., Grzesiek S. // J. Mol. Biol. 2002. V. 715. P. 739–752.
Supplementary files
