Intramolecular mobility affects the energy migration from quantum dots to reaction centers of photosynthesizing bacterium rb. Sphaeroides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The temperature dependence of the efficiency of energy migration from the CdSe/CdS/ZnS quantum dots (QDs, a fluorescence maximum at 580 nm) to the reaction centers (RCs) of the bacteria Rb.sphaeroides is practically constant over the temperature range from 100 to ~230–240 K but then decreases 2,5–3 times as temperature further increases to 310 K. The analysis of this dependence on the basis of Forster’s theory showed that the major changes in the energy transfer efficiency are associated with the temperature change in the quantum yield of QD fluorescence, which is due to the activation of intramolecular mobility in the RC structure.

Full Text

Restricted Access

About the authors

P. M. Krasilnikov

Lomonosov Moscow State University

Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

E. P. Lukashev

Lomonosov Moscow State University

Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

P. P. Knox

Lomonosov Moscow State University

Author for correspondence.
Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

N. Kh. Seyfullina

Lomonosov Moscow State University

Email: knox@biophys.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

A. B. Rubin

Lomonosov Moscow State University

Email: knox@biophys.msu.ru

Corresponding Member of the RAS

Russian Federation, 1, Leninskie gory, Moscow, 119991

References

  1. Lukashev E.P., Knox P.P., Gorokhov V.V., et al. // J. Photochem. Photobiol. B: Biol. 2016. V. 164. P. 73–82.
  2. Lukashev E.P., Oleinikov I.P., Knox P.P., et al. // Biophysics. 2017. V. 62. P. 722–727.
  3. Wraight C.A., Clayton R.K. // Biochim. Biophys. Acta. 1973. V. 333. P. 246–260.
  4. Захарова Н.И., Чурбанова И.Ю. // Биохимия. 2000. Т. 65. С. 181–193.
  5. Doster W., Cusack S., Petry W. // Nature. 1989. V. 337. P. 754–756.
  6. Pieper J., Hauss T., Buchsteiner A., et al. // Biochem. istry. 2007. V. 46. P. 11 398–11 409.
  7. Кононенко А.А., Нокс П.П., Чаморовский С.К. и др. // Хим. физика. 1986. Т. 5. С. 795–804.
  8. Агранович В.М., Галанин М.Д. Перенос энергии электронного возбуждения в конденсированных средах. М.: Наука, 1978. 384 с.
  9. Красильников П.М., Зленко Д.В., Стадничук И.Н. // Компьют. исслед. и моделирование. 2015. Т. 7. С. 125–144.
  10. Физические величины. Справочник/ Под ред. И.С. Григорьева, Е.З. Михайлова. М.: Энергоатом- издат, 1991. 1232 с.
  11. Гольданский В.И., Крупянский Ю.Ф., Шайтан К.В., Рубин А.Б. // Биофизика. 1987. Т. 32. С. 761–774.
  12. Cordier F., Grzesiek S. // J. Mol. Biol. 2002. V. 715. P. 739–752.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature dependence of the efficiency of energy migration from CT on RC in a hybrid film, measured by the change in fluorescence intensity (closed symbols, scale on the left) and the lifetime of CT (open symbols, scale on the right). For each temperature point, the values ​​of F and τavr are, respectively, the integral under the fluorescence curve and the value of the lifetime of the QD in the hybrid film. Fo and τavr are similar parameters in a pure QD film at the same temperature. In a pure QD film, the lifetime was varied from 17.3 ns at 100 K to 10.8 ns at 310 K. In a hybrid QD + RC film, from 10.7 ns to 9.1 ns.

Download (60KB)
3. Fig. 2. Temperature dependence of the rate constant of energy migration km from QD to RC, calculated by formulas (1) and (2) with the values of constant parameters Ea = 0.32 eV, (curve 1). Curve 2 was obtained with the additional assumption of the dependence of the distance R on temperature. Square symbols are experimental points of the fluorescence quenching index K = 1 - F / Fo from the data in fig. one.

Download (130KB)

Copyright (c) 2019 Russian Academy of Sciences