Hydroosmotic pressure

Cover Page

Cite item

Full Text

Abstract

This work proposes the term “hydroosmotic pressure” to define hydrostatic pressure emerging from an osmotic process during solvent diffusion through membranes. The usage of this term potentially clears the ambiguity of the term “osmotic pressure,” referring to the concentration of dissolved solids in a solution regardless of the existence of hydrostatic pressure. Hydroosmotic pressure is the difference between hydrostatic pressures on either side of the membrane; thus, the term “hydroosmotic pressure” allows for the most correct definition of many processes associated with osmotic phenomena.

About the authors

N. M. Bazhin

Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: bazhin8999@kinetics.nsc.ru
Russian Federation, 3, Institutskaya street, Novosibirsk, 630090; 1, Pirogova street, Novosibirsk, 630090

V. N. Parmon

Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: bazhin8999@kinetics.nsc.ru

Academician of the RAS

Russian Federation, 5, Lavrent'ev prospect, Novosibirsk, 630090; 1, Pirogova street, Novosibirsk, 630090

References

  1. Atkins P., de Paula J. Physical Chemistry. 9th ed. Oxford: Oxford Univ. Press, 2010. 972 p.
  2. Герасимов А. И., Древинг В. П., Еремин Е. Н., Киселев А. В., Лебедев В. П., Панченков Г. М., Шлыгин А. И. Курс физической химии. М.: Химия, 1964. Т. 1. 624 с.
  3. Compendium of Chemical Terminology. IUPAC Recommendations. 2nd ed. F. D. MeNaught, A. Wilkin-son. Eds. Oxford: Blackwell, 1999. 285 p.
  4. Ngai Yin Yip, Elimelech M. Thermodynamic and Energy Efficiency. Analysis of Power Generation from Natural Salinity Gradients by Pressure Retarded Osmosis // Environ. Sci. Technol. 2012. V. 46. P. 5230–5239. DOI: org/10.1021/es300060m.
  5. Straub A. P., Deshmukh A., Elimelech M. Pressure–Retarded Osmosis for Power Generation from Salinity Gradients: Is it Viable? // Energy and Environ. Sci. 2016. V. 9. P. 31–48. doi: 10.1039/c5ee02985f.
  6. He W., Wang Y., Mujtaba I. M., Shaheed M. H. An Evaluation of Membrane Properties and Process Characteristics of a Scaled-up Pressure Retarded Osmosis(PRO) Process // Desalination. 2016. V. 378. P. 1–13. DOI: org/10.1016/j. desal.2015.08.022.
  7. Achilli A., Childress A. E. Pressure Retarded Osmosis: from the Vision of Sidney Loeb to the First Prototype Installatio. Review // Desalination. 2010. V. 261. P. 205–211. DOI: 10.1016/j. desal.2010.06.017
  8. Marbach S., Yoshida H., Bocquet L. Osmotic and Diffusio-Osmotic Flow Generation at High Solute Concentration. Mechanical Approaches. // J. Chem. Phys. 2017. 146. 194701. DOI: org/10.1063/1.4982221.
  9. Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур. М.: Мир, 2002. 461 с.
  10. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973. 280 с.
  11. Пармон В. Н. Термодинамика неравновесных процессов для химиков. С приложением к химической кинетике, катализу, материаловедению и биологии. Долгопрудный: Интеллект, 2015. 472 с.
  12. Bazhin N. M. Gibbs Energy Role in Fresh and Salt Water Mixing // Desalination. 2015. V. 365. P. 343–346. DOI: 10.1016/j. desal.2015.03.023.
  13. Bazhin N. M. Water Flux in Pressure Retarded Osmosis // Desalination. 2015. V. 375. P. 21–23. doi: 10.1016/j.desal2015.07.027.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies