Thermodynamic analysis of the interaction of components in the Si–C–O system in the carbothermic synthesis of silicon carbide

Cover Page

Cite item

Full Text

Abstract

Phase equilibria in the Si–C–O system at temperatures of 1400–1700°C were modeled to theoretically determine the optimal conditions for implementing our proposed method of carbothermic synthesis of silicon carbide in reactors with an autonomous protective atmosphere. It was found that, depending on the ratio between the initial components and the synthesis temperature, the equilibrium products of the synthesis can be various combinations of silicon carbide, a gas phase, residual amounts of silicon oxide and carbon, andan oxide melt formed at high temperatures.

About the authors

A. S. Lebedev

South Urals Federal Research Centre of Mineralogy and Geoecology of the UB RAS; Federal State Autonomous Educational Institution of Higher Education "South Ural State University" (National Research University)

Author for correspondence.
Email: lebedev.a.s@bk.ru
Russian Federation, Ilmeny Reserve, Miass, Chelyabinsk district, 456317; 76, Lenin prospekt, Chelyabinsk, 454080

V. E. Eremyashev

South Urals Federal Research Centre of Mineralogy and Geoecology of the UB RAS; Federal State Autonomous Educational Institution of Higher Education "South Ural State University" (National Research University)

Email: lebedev.a.s@bk.ru
Russian Federation, Ilmeny Reserve, Miass, Chelyabinsk district, 456317; 76, Lenin prospekt, Chelyabinsk, 454080

E. A. Trofimov

Federal State Autonomous Educational Institution of Higher Education "South Ural State University" (National Research University)

Email: lebedev.a.s@bk.ru
Russian Federation, 76, Lenin prospekt, Chelyabinsk, 454080

V. N. Anfilogov

South Urals Federal Research Centre of Mineralogy and Geoecology of the UB RAS

Email: lebedev.a.s@bk.ru

Corresponding Member of the RAS

Russian Federation, Ilmeny Reserve, Miass, Chelyabinsk district, 456317

References

  1. Penchal Reddy M., Shakoor R.A., Gururaj Parande, Vyasaraj Manakari, Ubaid F., Mohamed A.M.A., Manoj Gupta // Progress Nat. Sci.: Materials Int. 2017. V. 27. Iss. 5. P. 606–614.
  2. Renbing Wu, Kun Zhou, Chee Yoon, Yue // Progress Materials Sci. 2015. V. 72. Р. 1–60.
  3. Агеев О. А, Беляев А.Е. Карбид кремния: технология, свойства, применение. Харьков: ИСМА, 2010. 532 с.
  4. Hwang Y., Riu D.-H., Kang H.-J., An J.-H., Jung W. S., Chun D., Kim Y. // Int. J. Materials Res. 2014. V. 105. P. 392–396.
  5. Martin H.P., Ecke R., Muller E. // J. Europ. Ceram. Soc. 1998. V. 18. P. 1737.
  6. Gorovenko V.I., Knyazik V.A., Shteinberg A.S. // Ceram. Int. 1993. V. 19. № 2. P. 129–132.
  7. Anfilogov V.N., Lebedev A.S., Ryzhkov V.M., Blinov I.A. // Inorg. Materials. 2016. V. 52. № 7. P. 655–660.
  8. Анфилогов В.Н., Лебедев А.С., Рыжков В.М. // ДАН. 2015. Т. 460. № 2. С. 170–172.
  9. Bale C.W., Chartrand P., Degterov S.A., Eriksson G., Hack K., Mahfoud R. Ben, Melançon J., Pelton A.D., Petersen S. // Calphad. 2002. V. 26. № 2. P. 189–228.
  10. Bale C.W., Bélisle E., Chartrand P., Decterov S.A., Eriksson G., Hack K., Jung I.-H., Kang Y.-B., Melançon J., Pelton A.D., Robelin C., Petersen S. // Calphad. 2009. V. 33. № 2. P. 295–311.
  11. Sakiko Kawanishi, Takeshi Yoshikawa, Toshihiro Tanaka // Materials Trans. 2009. V. 50. № 4. P. 806–813.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies