Variations of cosmogenic radionuclide production rates in chondrites of known orbits

Cover Page

Cite item

Full Text

Abstract

The results of multiyear investigations of cosmogenic radionuclide production rates along the orbits of 42 chondrites, fallen successively to the Earth in 1959-2016 are presented. They constitute a long set of homogeneous data, statistical smoothing of which demonstrates some main regularities of distribution and variation of the galactic cosmic rays (GCR) with energy > 100 MeV in the internal (< 5 AU) heliosphere. This set is exclusive, and it has timeless importance for all the future investigations of magneto-hydrodynamic peculiarities of the GCR solar modulation mechanism. Analysis of 26Al contents in 10 chondrites of known orbits allowed us to educe a spatial profile of the GCR intensity (E > 100 MeV), averaged over a 1 My in the internal heliosphere, testifying to permanent development and dissipation of a layer of the solar wind magnetic irregularities, which efficiently modulates cosmic radiation. It suggests a constancy of magneto-hydrodynamic environment in the Solar system at least for the last million years.

About the authors

G. K. Ustinova

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: ustinova@dubna.net.ru
Russian Federation, 19, Kosygin street, Moscow, 119991

V. A. Alexeev

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: ustinova@dubna.net.ru
Russian Federation, 19, Kosygin street, Moscow, 119991

References

  1. Лаврухина А. К., Устинова Г. К. Метеориты – зонды вариаций космических лучей. М.: Наука, 1990. 262 с.
  2. Алексеев В. А., Устинова Г. К. // Геохимия. 2006. № 5. С. 467-482.
  3. Устинова Г.К. //ДАН. 2016. Т 471. № 3. С. 289-293.
  4. Meier M.M.M. Meteorites with Photographic Orbits // http://www.meteoriteorbits.info. 2016.
  5. Ландау Л. Д., Лифшиц Е. М. Механика. М.: Наука, 1988. С. 51-57.
  6. Usoskin I. G., Desorgher L., Velinov P., et al. // Acta Geophys. 2009. V. 57. № 1. P. 88-101. DOI: 10.2478/ s11600-008-0019-9.
  7. Bazilevskaya G.A., Kalinin M.S., Krainev M.B., et al. The Astroparticle Phys. Conf. arXiv: 1411.7534v.1 [astroph. SR] 27 Nov. 2014.
  8. McKibben R.B., O'Gallagher J.J., Pyle K. R., Simpson J. A. Proc. 15th Intern. Cosm. Ray Conf. 1977. Plovdiv, V. 3. P. 240-245.
  9. Venkatesan D., Decker R. B., Krimigis S. M. Proc. 20th Intern. Cosm. Ray Conf. Moscow, 1987. V. 3. P. 385388.
  10. Parker E. N. Cosmic Magnetic Fields. Oxford: Clarendon Press, 1979. 841 p.
  11. Lavrukhina A. K., Ustinova G. K. // Adv. Space Res. 1981. V. 1. № 3. P. 143-146.
  12. Lavrukhina A. K., Ustinova G. K. // Earth and Planet. Sci. Lett. 1972. V. 15. № 4. P. 347-360.
  13. Alexeev V. A., Laubenstein M., Povinec P. P., Ustinova G. K. // Adv. Space Res. 2015. V. 56. P. 766-771. doi: 10.1016/j.asr.2015.05.004.
  14. McKibben R.B., Connell J.J., Lopate C., et al. // Ann. Geophys. 2003. V. 21. P. 1217-1228.
  15. Lavrukhina A. K., Ustinova G. K. // Nature. 1971. V. 232. № 5311. P. 462-463

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies