A new type of cracks adding to Griffith–Irwin cracks

Cover Page

Cite item

Full Text

Abstract

The distinctions in the description of the conditions of cracking of materials are revealed. For Griffith–Irwin cracks, fracture is determined by the magnitude of the stress-intensity factor at the crack tip; in the case of the new type of cracks, fracture occurs due to an increase in the stress concentrations up to singular concentrations.

About the authors

V. A. Babeshko

Federal State Budget Institution of Science "Federal Research Center The Southern Scientific Centre of the Russian Academy of Sciences";Kuban State University

Author for correspondence.
Email: babeshko41@mail.ru

Academician of the RAS

Russian Federation, Rostov-on-Don;Krasnodar

O. M. Babeshko

Kuban State University

Email: babeshko41@mail.ru
Russian Federation, Krasnodar

O. V. Evdokimova

Federal State Budget Institution of Science "Federal Research Center The Southern Scientific Centre of the Russian Academy of Sciences"

Email: babeshko41@mail.ru
Russian Federation, Rostov-on-Don

References

  1. Griffith A. The Phenomena of Rupture in Solids // Trans. Roy. Soc. London, 221A. 1920. P. 163-197.
  2. Irwin G. Fracture Dynamics. Fracture of Metals. Cleveland: ASM, 1948. P. 147-166.
  3. Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974. 640 с.
  4. Морозов Н. Ф. Математические вопросы теории трещин. М.: Наука, 1984. 256 с.
  5. Babeshko V. A., Evdokimova O. V., Babeshko O. M. On the Possibility of Predicting Some Types of Earthquake by a Mechanical Approach // Acta Mech. 2018. V. 229. № 5. P. 2163-2175. hpps//doi.org/10.1007/ s00707-017-2092-0
  6. Babeshko V.A., Evdokimova O. V., Babeshko O. M. On a Mechanical Approach to the Prediction of Earthquakes During Horizontal Motion of Litospheric Plates // Acta Mech. 2018. V. 10. hpps//doi. org/10.1007/s00707-018-2255-7
  7. Бабешко В.А., Евдокимова О. В., Бабешко О. М. О влиянии пространственной модели литосферных плит на стартовое землетрясение // ДАН. 2018. Т. 480. № 2. С. 158-163.
  8. Партон В. З., Борисковский В. Г. Динамика хрупкого разрушения. М.: Машиностроение, 1988. 240 с.
  9. Александров В. М., Сметанин Б. И., Соболь Б. В. Тонкие концентраторы напряжений в упругих телах. М.: Наука, 1993. 224 с.
  10. Kirugulige M. S., Tippur H. V. Mixed-Mode Dynamic Crack Growth in Functionally Graded Glass-Filled Epoxy // Exp. Mech. 2006. V. 46. № 2. Р. 269-281.
  11. Rangarajan R., Chiaramonte M. M., Hunsweck M. J., Shen Y., Lew A. J. Simulating Curvilinear Crack Propagation in Two Dimensions with Universal Meshes // Int. J. Numer. Meth. Eng. 2015. V. 102. № 3/4. Р. 632-670.
  12. Huang Y., Gao H. Intersonic Crack Propagation. Pt II. Suddenly Stopping Crack // J. Appl. Mech. 2002. V. 69. Р. 76-80.
  13. Antipov Y. A., Smirnov A. V. Subsonic Propagation of a Crack Parallel to the Boundary of a Half-Plane // Math. Mech. Solids. 2013. V. 18. P. 153-167.
  14. Krueger R. Virtual Crack Closure Technique: History, Approach, and Applications // Appl. Mech. Rev. 2004. V. 57. Р. 109-143.
  15. Oneida E. K., van der Meulen M. C.H., Ingraffea A. R. Methods for Calculating G, GI and GII to Simulate Crack Growth in 2D // Multiple-Material Struct. Eng. Fract. Mech. 2015. V. 140. Р. 106-126.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies