Temperature measurements of optically cooled calcium atoms using differential two-photon spectroscopy

Cover Page

Cite item

Full Text

Abstract

A differential two-photon method of measuring the temperature of 40Ca atoms in a continuously operating magneto-optical trap is demonstrated. Coherent two-photon resonances at the 4s2 1S0-50 1S0 Rydberg transition have been investigated experimentally using resonance laser beams propagating at different angles. The tempera­ture of the cloud of 40Ca atoms was measured depending on the frequency detuning of the cooling laser radiation.

About the authors

A. A. Bobrov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: eva.villi@gmail.com
Russian Federation, 125412, Izhorskaya st. 13 Bd.2

E. V. Vilshanskaya

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: eva.villi@gmail.com
Russian Federation, 125412, Izhorskaya st. 13 Bd.2

I. D. Arshinova

Joint Institute for High Temperatures of the Russian Academy of Sciences

Author for correspondence.
Email: eva.villi@gmail.com
Russian Federation, 125412, Izhorskaya st. 13 Bd.2

S. A. Saakyan

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: eva.villi@gmail.com
Russian Federation, 125412, Izhorskaya st. 13 Bd.2

V. A. Sautenkov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: eva.villi@gmail.com
Russian Federation, 125412, Izhorskaya st. 13 Bd.2

B. V. Zelener

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: eva.villi@gmail.com
Russian Federation, 125412, Izhorskaya st. 13 Bd.2

V. E. Fortov

Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: eva.villi@gmail.com

Academician of the RAS

Russian Federation, 125412, Izhorskaya st. 13 Bd.2

References

  1. Honda K., Takahashi Y., Kuwamoto T., et al. // Phys. Rev. A. 1999. V. 59. № 2. P. R934-R937.
  2. Loftus T., Bochinski J. R., Mossberg T. W. // Phys. Rev. A. 2000. V. 61. 061401.
  3. Xu X., Loftus T. H., Smith M. J. // Phys. Rev. A. 2002. V. 66. 011401.
  4. Cristiani M., Valenzuela T., Gothe H. // Phys. Rev. A. 2010. V. 81. 063416.
  5. Choi S.-K., Park S.-E., Chen J. // Phys. Rev. A. 2008. V. 77. 015405.
  6. Meacher D. R., Boiron D., Metcalf H. // Phys. Rev. A. 1994. V. 50. № 3. P. R1992-R1994.
  7. Mitsunaga M., Yamashita M., Koashi M. // Opt. Lett. 1998. V. 23. № 11. P. 840-842.
  8. Tabosa J. W.R., Lezama A., Cardoso G. C. // Opt. Com¬mun. 1999. V. 165. Iss. 1-3. P. 59-64.
  9. Sautenkov V. A., Saakyan S. A., Vilshanskaya E. V. // J. Russ. Laser Res. 2017. V. 38. № 1. P. 91-95.
  10. Sautenkov V. A., Saakyan S. A., Bobrov A. A. // J. Opt. Soc. Amer. B. 2018. V. 35. № 7. P. 1546-1551.
  11. Bobrov A.A., Saakyan S.A., Sautenkov V.A. // Quantum Electron. 2018. V. 48. № 5. P. 438-442.
  12. Зеленер Б. Б., Саакян С. А., Саутенков В. А. // Письма в ЖЭТФ. 2015. Т. 148. № 11. C. 1-6.
  13. Cavasso Filho R. L., Magno W. C., Manoel D. A. // J. Opt. Soc. Amer. B. 2003. V. 20. № 7. P. 994-1002.
  14. Witte A., Kisters T., Riehle F. // J. Opt. Soc. Amer. B. 1992. V. 9. № 7. P. 1030-1037.
  15. Ryabtsev I. I., Beterov I. I., Tretyakov D. B., Entin V. M., Yakshina E. A. // Phys. Rev. A. 2011. V. 84. 053409.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies