Interaction of actinide matrices with brine

Cover Page

Cite item

Full Text

Abstract

Radioactive wastes with long-lived actinides derived in the nuclear fuel cycle can be disposed in very deep boreholes (depth up to 5 km) in titanate and zirconate matrices. During their interaction with a hot chloride brine very low release rate of the waste imitator (Nd) is shown. The elements in solution occur in soluble form, role of colloids is insignificant. The data allow selection of matrices for actinide waste immobilization.

About the authors

S. V. Yudintsev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences;Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Author for correspondence.
Email: syud@igem.ru

corresponding member of the RAS

Russian Federation, Moscow;Moscow

V. I. Malkovsky

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: syud@igem.ru
Russian Federation, Moscow

M. S. Nikolsky

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: syud@igem.ru
Russian Federation, Moscow

B. S. Nikonov

Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences

Email: syud@igem.ru
Russian Federation, Moscow

References

  1. Лаверов Н.П., Величкин В.И, Омельяненко Б.И., Юдинцев С. В., Петров В. А., Бычков А. В. Изоляция отработавших ядерных материалов (геолого-геохимические основы). М: ИФЗ РАН, 2008. 280 с.
  2. Trends towards Sustainability in the Nuclear Fuel Cycle. P.: NEA, 2011. 183 p.
  3. Копырин А. А., Карелин А. И., Карелин В. А. Технология производства и радиохимической переработки ядерного топлива. М.: Атомэнергоиздат, 2006. 576 с.
  4. State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry. P.: NEA, 2018. 299 p.
  5. Physics and Safety of Transmutation Systems. P.: NEA, 2006. 120 p.
  6. Ringwood A.E. // Mineral. Mag. 1985. V. 49. P. 159– 176.
  7. Юдинцев С. В., Никольский М. С., Никонов Б. С., Мальковский В. И. // ДАН. 2018. Т. 480. № 2. С. 217-222.
  8. Юдинцев С. В., Стефановский С. В., Каленова М. Ю., Никонов Б.С, Никольский М.С, Кощеев А.М., Щепин А. С. // Радиохимия. 2015. Т. 57. № 3. С. 272282.
  9. Юдинцев С. В., Стефановский С. В., Стефанов- ская О. И., Никонов Б. С., Никольский М. С. // Радиохимия. 2015. Т. 57. № 6. С. 547-555.
  10. Giere R., Lumpkin G.R., Smith K. In: Highlights in Applied Mineralogy. N.Y.: De Gruyter, 2017. P. 223244.
  11. Giere R., Malmstrom J., Reusser E., Lumpkin G. R., Duggelin M., Mathys D., Guggenheim R., Gunther D. // Mat. Res. Soc. Symp. Proc. 2001. V. 663. P. 267-276.
  12. Gibb F. G.F., Travis K. P., Hesketh K. W. // Mineral. Mag. 2012. V. 76. P. 3003-3017.
  13. Brady P. V., Freeze G. A., Kuhlman K. L., Hardin E. L., Sassani D. C., MacKinnon R.J. In: Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste. Woodhead Publishing Series in Energy. 2nd ed. L.: Elsevier, 2017. P. 89-112.
  14. Frape K., Fritz P., McNutt R. H. // Geochim. et Cos- mochim. Acta. 1984. V. 48. P. 1617-1627.
  15. Frankel G. S., Vienna J. D., Lian J., Scully J. R., Gin S., Ryan J. V., Wang J., Kim S. H., Windl W., Du J. // J. Materials Degradation. 2018. V. 15. P. 1-17.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies