Formation parameters of high-pressure minerals in the Dhofar 717 AND 864 chondrite meteorites

Cover Page

Cite item

Full Text

Abstract

This paper presents the results of a Raman spectroscopic study of shock melt veins in L6 chondritic meteorites Dhofar 717 and 864, and conclusions about the PT-parameters recorded in these meteorites after the impact event. The primary minerals of the host chondrite include olivine, orthopyroxene, clinopyroxene, plagioclase, chromite, phosphates, troilite, and kamasite. Shock melt veins up to 1 cm thick contain fragments of the high- pressure minerals ringwoodite, wadsleyite, majorite, akimotoite, jadeite, lingunite, and tuite and quenched melt consisting of majorite, ringwoodite, troilite, and kamasite. The mineral associations of the Dhofar 717 and 864 chondrites indicate high peak PT-parameters of the impact in the region of stability of majorite (>20 GPa and >2500 K) and bridgmanite (>25 GPa and >2500 K). The presence of lingunite also directly indicates a peak pressure in the area of stability of the bridgmanite.

About the authors

K. D. Litasov

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: klitasov@igm.nsc.ru
Russian Federation, Novosibirsk

D. D. Badyukov

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: klitasov@igm.nsc.ru
Russian Federation, Moscow

N. P. Pokhilenko

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: klitasov@igm.nsc.ru

academician of the RAS

Russian Federation, Novosibirsk

References

  1. Gillet P., El Goresy A. // Annu. Rev. Earth and Planet. Sci. 2013. V. 41. P. 257-285.
  2. Ohtani E, Kimura Y, Kimura M, Takata T, Kondo T, Kubo T. // Earth and Planet. Sci. Lett. 2004. V. 227. P. 505-515.
  3. Tomioka N ., Miyahara M . // Meteoritics & Planet. Sci. 2017. V. 52. P. 2017-2039.
  4. Litasov K., Ohtani E ., Langenhorst F ., Yurimoto H., Kubo T., Kondo T. // Earth and Planet. Sci. Lett. 2003. V. 211. P. 189-203.
  5. Tschauner O ., Ma C ., Beckett J.R., Prescher C ., Prakapenka V.B., Rossman G.R. // Science. 2014. V. 346. P. 1100-1102.
  6. Miyahara M., Ohtani E., Ozawa S., Kimura M ., El Goresy A., Sakai T., Nagase T., Hiraga K., Hirao N., Ohishi Y. // Proc. Nat. Acad. Sci. USA. 2011. V. 108. P. 5999-6003.
  7. Tomioka N ., Fujino K . // Science. 1997. V. 277. P. 1084-1086.
  8. Feng L., Miyahara M ., Nagase T., Ohtani E ., Hu S ., El Goresy A., Lin Y. // Amer. Mineral. 2017. V. 102. P. 1254-1262.
  9. Sharp T. G., DeCarli P. S. // Meteorites and the Early Solar System II. Houston: Univ. Arisona Press, 2006. P. 653-677.
  10. Stoffler D., Keil K., Scott E.R.D. // Geochim. et Cos- mochim. Acta. 1991. V. 55. P. 3845-3867.
  11. Козлов Е.А., Сазонова Л. В. // Петрология. 2012. Т. 20. № 4. С. 334-334.
  12. Zhang J ., Herzberg C . // J. Geophys. Res. 1994. V. 99. P. 17729-17742.
  13. Akaogi M ., Ito E ., Navrotsky A . // J. Geophys. Res. 1989. V. 94. P. 15 671-15 685.
  14. Gasparik T . Phase Diagrams for Geoscientists. An Atlas of the Earth's Interior. N.Y.: Springer, 2003. 457 р.
  15. Zhou Y ., Irifune T., Ohfuji H., Shinmei T., Du W. // Physi. and Chem. Minerals. 2017. V. 44. P. 33-42.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies