Некоторые свойства ультрафильтров широко понимаемых измеримых пространств

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследуются ультрафильтры (максимальные фильтры) пространства, измеримая структура которого задаётся семейством множеств, замкнутым относительно конечных пересечений и содержащим пустое и объемлющее множество (единицу пространства). Получены необходимые и достаточные условия максимальности фильтров упомянутого пространства, формулируемые в терминах множеств - элементов двойственного семейства, именуемых квазиокрестностями. Эти условия согласуются с известными в теории пространств Стоуна, но охватывают целый ряд других случаев, касающихся, в частности, оснащения исходного множества топологией (случай открытых ультрафильтров) и семейством замкнутых множеств топологического пространства (т.е. замкнутой топологией в смысле П.С. Александрова). Определяющую роль в этих построениях играет топология на пространстве ультрафильтров, определяемая по аналогии со случаем пространства Стоуна. Рассматривается также оснащение упомянутого пространства топологией, допускающей идейную аналогию с используемой при построении расширения Волмэна. В результате реализуется битопологическое пространство (БТП) со сравнимыми топологиями, одна из которых хаусдорфова, а другая реализует компактное Т1-пространство. Указаны условия, обеспечивающие совпадение топологий и как следствие реализацию (нульмерного) компакта, а также условия, при которых упомянутые топологии различаются, определяя невырожденное БТП. В случае, когда семейство множеств, задающее измеримую структуру, обладает свойством отделимости, установлено, что исходное объемлющее множество допускает погружение в упомянутое БТП в виде всюду плотного подмножества.

Об авторах

А. Г. Ченцов

Институт математики и механики имени Н.Н. Красовского Уральского отделения Российской академии наук; Уральский федеральный университет им. Б.Н. Ельцина

Автор, ответственный за переписку.
Email: chentsov@imm.uran.ru

Член-корреспондент РАН

Россия, 620219, г. Екатеринбург, ул. С. Ковалевской, 16; 620000, Россия, г. Екатеринбург, пр. Ленина, 51

Список литературы

  1. Ченцов А. Г. Об одном примере представления пространства ультрафильтров алгебры множеств // Тр. Ин-та математики и механики УрО РАН. 2011. Т. 17. № 4. С. 293-311.
  2. Ченцов А. Г., Бакланов А. П. Об одной задаче асимптотического анализа, связанной с построением области достижимости // Тр. МИРАН. 2015. T. 291. C. 292-311.
  3. Ченцов А. Г. Компактификаторы в конструкциях расширений задач о достижимости с ограничениями асимптотического характера // Тр. Ин-та математики и механики УрО РАН. 2016. T. 22. № 1. С. 294-309.
  4. Булинский А. В., Ширяев А. Н. Теория случайных процессов. М.: Физматлит, 2005. 402 c.
  5. Илиадис С. Д., Фомин С. В. Метод центрированых систем в теории топологических пространств // УМН. 1966. Т. 21. № 4. C. 47-76.
  6. Ченцов А. Г. Некоторые свойства ультрафильров, связанные с конструкциями расширений // Вестн. Удмурт. ун-та. Математика. Механика. Компьютерные науки. 2014. В. 1. C. 87-101.
  7. Энгелькинг Р. Общая топология. М.: Мир, 1986. 751 с.
  8. Chentsov A. G., Morina S. I. Extensions and relaxations. Dordrecht; Boston; L.: Kluwer Acad. Publ., 2002. 408 p.
  9. Ченцов А. Г. Фильтры и ультрафильтры в конструкциях множеств притяжения// Вестн. Удмурт. ун-та. Математика. Механика. Компьютерные науки. 2011. В. 1. C. 113-142.
  10. Гретцер Г. Общая теория решёток. М.: Мир, 1982. 452 с.
  11. Dvalishvili B. P. Bitopological Spaces: Theory, Relations with Generalized Algebraic Structures, and Applications Mathematics studies. Amsterdam: Nort-Holland, 2005. 422 p.
  12. Ченцов А. Г. Битопологические пространства ультрафильтров и максимальных сцепленных систем // Тр. Ин-та математики и механики УрО РАН. 2018. Т. 24. № 1. C.258-272.
  13. Ченцов А. Г., Пыткеев Е. Г. Некоторые топологические конструкции расширений абстрактных задач о достижимости // Тр. Ин-та математики и механики УрО РАН. 2014. T. 20. № 4. C. 312-329.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2019