Bacterial film disintegration with electrochemically reduced water

Cover Page

Abstract


This work aimed to study the fine structure of bacterial films grown on the inner tuber surface of flow reactor. Applying scanning electron microscopy (SEM) approaches, the detailed biofilm relief was visualized. The action of electrochemically reduced water (ERW) on the biofilm ultrastructure generated by the plankton form of E.coli and/or lacto bacteria was investigated. Treatments with an ERW solution were exhibited to destroy the biofilm organic polymer matrix and bacterial cells embedded in a matrix.


A. G. Pogorelov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Author for correspondence.
Email: agpogorelov@rambler.ru

Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

A. L. Kuznetsov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru

Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

A. I. Panait

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru

Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

M. A. Pogorelova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru

Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

O. A. Suvorov

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru

Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

G. R. Ivanitskii

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: agpogorelov@rambler.ru

Russian Federation, 3, Institutskaya street, Pushchino, Moscow Region, 142290

Corresponding Member of the Russian Academy of Sciences

  1. Garrett T.R., Bhakoo M., Zhang Z. // Prog. Nat. Sci. 2008. V. 18. P. 1049-1056.
  2. Bakhir V.M., Pogorelov A.G. // Int. J. Pharm. Res. & Allied Sci. 2018. V. 7. P. 41-57.
  3. Shirtliff M.E., Mader J.T., Camper A.K. // Chem. Biol. 2000. V. 9. P. 859-871.
  4. Costerton J.W. // Int. J. Antimicrob. Agents. 1999. V. 11. P. 217-221.
  5. Bridier A., Briandet R., Thomas V., Dubois-Brissonnet F. // Biofouling. 2011. V. 27. P. 1017-1032.
  6. Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J., Wang Y., Britigan B.E., Singh P.K. // Science. 2011. V. 334. P. 982-986.
  7. Drescher K., Shen Y., Bassler B.L., Stone H.A. // Proc. Natl. Acad. Sci. U.S.A.. 2013. V. 110. P. 4345-4350.
  8. D’Atanasio N., Capezzone de Joannon A., Mangano G., Meloni M., Giarratana N., Milanese C., Tongiani S. // Wounds. 2015. V. 27. P. 265-273.
  9. Cloete T.E., Thantsha M.S., Maluleke M.R., Kirkpatrick R. // J. Appl. Microbiol. 2009. V. 107. P. 379-384.
  10. Ludecke C., Jandt K.D., Siegismund D., Kujau M.J., Zang E., Rettenmayr M., Bossert J., Roth M. // PLoS One. 2014. V. 9. P. e84837-e84837.
  11. Crusz S.A., Popat R., Rybtke M.T., Cámara M., Givskov M., Tolker-Nielsen T., Diggle S.P., Williams P. // Biofouling. 2012. V. 28. P. 835-842.
  12. Rollet C., Gal L., Guzzo J. // FEMS Microbiol. Lett. 2009. V. 290. P. 135-142.
  13. Погорелов А.Г., Гаврилюк В.Б., Погорелова В.Н., Гаврилюк Б.К. // Клеточные технологии в биологии и медицине. 2012. № 3. С. 176-180.
  14. Погорелов А.Г., Чеботарь И.В., Погорелова В.Н. // Клеточные технологии в биологии и медицине. 2014. № 2. С. 133-136.

Views

Abstract - 68

PDF (Russian) - 40

PlumX


Copyright (c) 2019 Russian academy of sciences