On the problem of thermoacoustics of conductive materials under laser irradiation

Cover Page

Abstract


Within the framework of the one-temperature model of thermoelasticity, the analysis of the effect of electon localization processes on the thermoelastic response of conductors under pulsed laser irradiation is performed. It is shown that the localization of electrons can lead to a significant tightening of the deformation processes in conductors compared with the processes that develop according to the usual thermoelastic mechanism.


About the authors

N. F. Morozov

Institute of Problems in Mechanical Engineering of Russian Academy of Sciences; Saint-Petersburg State University

Email: londr@yandex.ru

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Academician of the Russian Academy of Sciences

K. L. Muratikov

Ioffe Institute

Email: londr@yandex.ru

Russian Federation, 26, Politekchnicheskaya street, Saint-Petersburg, 194021

B. N. Semenov

Institute of Problems in Mechanical Engineering of Russian Academy of Sciences; Saint-Petersburg State University

Email: londr@yandex.ru

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

D. A. Indeitsev

Institute of Problems in Mechanical Engineering of Russian Academy of Sciences; Saint-Petersburg State University

Email: londr@yandex.ru

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

Corresponding member of the Russian Academy of Sciences

D. S. Vavilov

Institute of Problems in Mechanical Engineering of Russian Academy of Sciences; Saint-Petersburg State University

Author for correspondence.
Email: londr@yandex.ru

Russian Federation, V.O., Bol'shoy prospect, 61, St. Petersburg, 199178; 7/9, Universitetskaya embankment, Saint-Petersburg, 199034

References

  1. Khafizov M., Pakarinen J., He L., et al. // Acta Materialia. 2016. V. 112. P. 209-215.
  2. Даниловская В. И. // ПММ. 1952. Т. XVI. № 3. С. 342-344.
  3. Даниловская В. И. // Изв. АН СССР. Механика и машиностроение. 1959. № 3. C.129-132.
  4. Вовненко Н. В., Зимин Б. А., Судьенков Ю. В. // ЖТФ. 2011. Т. 81. № 6. С. 57-62.
  5. Sudenkov Yu.V., Zimin B. A. // Int. J. Heat and Mass Transfer. 2015. V. 85. P. 781-786.
  6. Индейцев Д. А., Осипова Е. В. // ДАН. 2017. Т. 473. № 2. С. 154-158.
  7. Vega-Flick A., Eliason J. K., Maznev A. A., et al. // Rev. Sci. Instrum. 2015. V. 86. 123101 (4 pages).
  8. Matsuda O., Larciprete M. C., Voti R. L., et al. // Ultrasonics. 2015. V. 56. P. 3-20.
  9. Rublack T., Seifert G. // Opt. Material Express. 2011. V. 1. № 4. P. 543-550.
  10. Tzou D. Y. Macro- to Micro-Scale Heat Transfer: The Lagging Behavior. 2nd ed. West Sussex (UK): Wiley, 2015. 1298 p.
  11. Cutler M., Mott N. F. // Phys. Rev. 1969. V. 181. № 3. P. 1336-1340.
  12. Eisenbach A., Havdala T., Delahaye J., Grenet T., Amir A., Frydman A. // Phys. Rev. Lett. 2016. V. 117. 116601 (5 pages).
  13. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. 5-е изд. М.: Физматлит, 2002. Ч. 1. 616 с.

Statistics

Views

Abstract - 234

PDF (Russian) - 240

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies