Hydrogels and sponge materials based on triblock copolymers of lactide and ethylene glycol

Cover Page

Cite item

Full Text

Abstract

New techniques have been developed for the preparation of spongy materials and hydrogels based on triblock copolymers of lactide and ethylene glycol with various molecular structures. The influence of the composition of the initial copolymers and supramolecular structure on their mechanical characteristics and biocompatibility was studied. Cytological studies have shown that all materials have a high level of cell viability (GSP). The possibility of obtaining hydrogels with elastic moduli up to 4460 kPa, a record for such systems, was shown.

About the authors

Y. D. Zagoskin

National Research Centre "Kurchatov Institute"

Author for correspondence.
Email: zagos@inbox.ru
Russian Federation, 1, Kurchatov square, Moskow, 123182

T. E. Grigoriev

National Research Centre "Kurchatov Institute"

Email: zagos@inbox.ru
Russian Federation, 1, Kurchatov square, Moskow, 123182

S. V. Krasheninnikov

National Research Centre "Kurchatov Institute"

Email: zagos@inbox.ru
Russian Federation, 1, Kurchatov square, Moskow, 123182

E. V. Cuevda

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation

Email: zagos@inbox.ru
Russian Federation, 4, Mitrofana Sedina Street, Krasnodar, Russian Federation, 350063

E. A. Gubareva

Kuban State Medical University of the Ministry of Healthcare of the Russian Federation

Email: zagos@inbox.ru
Russian Federation, 4, Mitrofana Sedina Street, Krasnodar, Russian Federation, 350063

A. V. Bakirov

National Research Centre "Kurchatov Institute"; Institute of synthetic polymeric materials of the Russian Academy of Sciences

Email: zagos@inbox.ru
Russian Federation, 1, Kurchatov square, Moskow, 123182; 70, Profsoyuznaya street, Moscow, 117393

S. N. Chvalun

National Research Centre "Kurchatov Institute"; Institute of synthetic polymeric materials of the Russian Academy of Sciences

Email: zagos@inbox.ru
1, Kurchatov square, Moskow, 123182; 70, Profsoyuznaya street, Moscow, 117393

References

  1. Nair L.S., Laurencin C.T. Biodegradable Polymers as Biomaterials // Prog. Polym. Sci. 2007. V. 32. № 8-9. P. 762-798.
  2. Kamath K.R., Park K. Biodegradable hydrogels in drug delivery // Adv. Drug Deliv. Rev., 1993. V. 11. № 1-2. P. 59-84.
  3. Sumita Y., Honda M.J., Ohara T. et al. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering // Biomaterials. 2006. V. 27. P. 3238-3248.
  4. Романова О.А., Григорьев Т.Е., Гончаров М.Е. и др. Хитозан как модифицирующий компонент искусственного матрикса в тканевой инженерии кожи человека // Клеточные технологии в биологии и медицине. 2015. № 2. С. 103-113.
  5. Mahoney M.J., Anseth K.S. Three-dimensional Growth and Function of Neural Tissue in Degradable polyethylene Glycol Hydrogels // Biomaterials. 2006. V. 27. № 10. P. 2265-2274.
  6. Grigoriev T.E., Bukharova T.B., Vasilyev A.V., et al. Effect of Molecular Characteristics and Morphology on Mechanical Performance and Biocompatibility of PLA-based Spongious Scaffolds // BioNanoScience, 2018. V. 8. № 4. P. 977-983.
  7. Zhuravleva M., Gilazieva Z., Grigoriev T.E., et al. In Vitro Assessment of Electrospun Polyamide 6 Scaffolds for Esophageal Tissue Engineering // J. Biomedical Materials Research Part B: Applied Biomaterials, 2018. V. 107. № 2. P. 253-268.
  8. Vatankhah-Varnosfaderani M., Keith A.N., Cong Y.D., et. al. Chameleon-like Elastomers with Molecularly Encoded Strain-Adaptive Stiffening and Coloration // Sci. 2018. V. 359. № 6383. P. 1509-1513.
  9. Vatankhah-Varnosfaderani M., Daniel W.F.M., Everhart M.H. et. al. Mimicking Biological Stress-Strain Behaviour with Synthetic Elastomers // Nature. V. 549. № 7673. P. 497-501.
  10. Saffer E.M., Tew G.N., Bhatia S.R. Poly(lactic acid)-poly(ethyleneoxide) Block Copolymers: New Directions in Self-Assembly and Biomedical Applications // Current Medicinal Chemistry. 2011. V. 18. № 36. P. 5676-5686.
  11. Agrawal S.K., Sanabria-DeLong N., Tew G.N., Bhatia S.R. Rheological Characterization of Biocompatible Associative Polymer Hydrogels with Crystalline and Amorphous Endblocks // J. Mater. Res. 2006. V. 21. № 8. P. 2118-2125.
  12. Aamer K.A., Sardinha H., Bhatia S.R., Tew G.N. Rheological Studies of PLLA-PEO-PLLA Triblock Copolymer Hydrogels // Biomaterials. 2004. V. 25. P. 1087-1093.
  13. Almubarak S., Nethercott H., Freeberg M., et al. Tissue Engineering Strategies for Promoting Vascularized Bone Regeneration // Bone. 2016. V. 83. P. 197-209.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies