New proton-conducting polydiimidazopyridine based membrane for ht-pem fuel cell

Cover Page

Cite item

Full Text

Abstract

Polydiimidazopyridine was synthesized from 2,3,5,6-tetraaminopyridine and 2,5-dihydroxyterephtalatic acid in polyphosphoric acid and characterized. Polydiimidazopyridine possesses high viscosity, high thermal oxidation resistance and excellent film-forming properties. The polymer was processed from reaction mixture in polyphosphoric acid into proton conducting membranes. The membranes possess higher proton conductivity than for many known membranes at 20-200 °C.

About the authors

I. I. Ponomarev

Institute of Organoelement Compounds of the Russian Academy of Sciences

Author for correspondence.
Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

D. Yu. Razorenov

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

Iv. I. Ponomarev

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

Yu. A. Volkova

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 28, Vavilova street, Moscow, 119991

K. M. Skupov

Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: kskupov@gmail.com
Russian Federation, 28, Vavilova street, Moscow, 119991

A. A. Lysova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru
Russian Federation, 31, Leninsky prospekt, Moscow,119991

A. B. Yaroslavtsev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagapon@ineos.ac.ru

Corresponding member of the Russian Academy of Sciences

Russian Federation, 31, Leninsky prospekt, Moscow,119991

References

  1. Коршак В.В. Термостойкие полимеры. М., 1969. С. 411.
  2. Sikkema D.J. // Polymer. 1998. V. 39. P. 5981.
  3. Lammers M., Klop E.A., Northolt M.G., Sikkema D. J. // Polymer. 1998. V. 39. P. 5999.
  4. Li Q., Aili D., Hjuler H.A., Jensen J.O. High Temperature Polymer Electrolyte Membrane Fuel Cells, Approaches, Status and Perspectives. Cham: Springer, 2016. P. 545.
  5. Пономарев И.И., Разоренов Д.Ю., Пономарев Ив.И., Волкова Ю.А., Скупов К.М., Лысова А.А., Ярославцев А.Б. // ДАН. 2019. Т. 485. № 1. С. 44-47.
  6. Asensio J.A., Rborro S., Gomez-Romero P. // J. Polym. Sci. A. 2002. V. 40. P. 3703.
  7. Dang T.D. Molecular/Nano Level Approaches for the Enhancement of Axial Compressive Properties of Rigid-Rod Polymers. PhD thesis. University of Cincinnati. 2009. P. 159.
  8. Пономарев И.И., Рыбкин Ю.Ю., Горюнов Е.И., Петровский П.В., Лысенко К.А. // Изв. АН. Сер. хим. 2004. № 9. P. 1937.
  9. Лысова А.А., Пономарев И.И., Ярославцев А.Б. // ЖНХ. 2012. Т. 57. С. 3.
  10. Kondratenko M.S., Ponomarev I.I., Gallyamov M.O., Razorenov D.Y., Volkova, Y.A. Kharitonov E.P., Khokhlov A.R. // Beilstein J. Nanotechnol. 2013. V. 4. P. 481.
  11. Skupov K.M., Ponomarev I.I., Razorenov D.Y., Zhigalina V.G., Zhigalina O.M., Ponomarev I.I., Volkova Y.A., Volfkovich Y.M., Sosenkin V.E. // Macromol. Symp. 2017. V. 375. P. 1600188.
  12. Пономарев И.И., Разоренов Д.Ю., Пономарев Ив.И., Волкова Ю.А., Скупов К.М. // Электрохимия. 2014. Т. 50. С. 773.
  13. Shamardina O., Chertovich A., Kulikovsky A.A., Khokhlov A.R. // Int. J. Hydrogen Energy. 2010. V. 35. P. 9954.
  14. Kondratenko M.S., Gallyamov M.O., Tyutyunnik O.A., Kurbakova I.V., Chertovich A.V., Malinkina E.K., Tsirlina G.A. // J. Electrochem. Soc. 2015. V. 162. P. F587.
  15. Kondratenko M.S., Gallyamov M.O., Khokhlov A.R. // Int. J. Hydrogen Energy. 2012. V. 37. P. 2596.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies