Functional comparison of short and long isoforms of the TRF2 protein in Drosophila melanogaster

Cover Page

Cite item

Full Text

Abstract

The TRF2 protein (TBP-related factor 2) can substitute for TBP in the TFIID complex forming alternative transcription initiation complexes for TATA-less promoters, including promoters of histone H1 and required for transposon repression piRNA-clusters. The Drosophila trf2 gene codes for two isoforms: a “short” and a “long” one, in which the same short TRF2 sequence is preceded by a long N-terminal domain. Here, we demonstrated that the long TRF2 isoform has greater functional activity then the short isoform by expressing each of them in reduced rate under the endogenous promoters. Expression of the long isoform alone doesn't affect neither the flies` viability nor the sex ratio. Expression of the short isoform alone leads to the phenotype described for the trf2 gene insufficiency and derepression of transposable elements, that is, decreased viability, violation of homologous chromosome pairing and segregation, and apparent female-biased sex ratio.

About the authors

I. S. Osadchiy

Institute of Gene Biology of the Russian Academy of Sciences

Author for correspondence.
Email: untie@mail.ru
Russian Federation, 34/5, Vavilova street, Moscow, 119334

P. G. Georgiev

Institute of Gene Biology of the Russian Academy of Sciences

Email: untie@mail.ru

Academician of the Russian Academy of Sciences

Russian Federation, 34/5, Vavilova street, Moscow, 119334

O. G. Maksimenko

Institute of Gene Biology of the Russian Academy of Sciences

Email: untie@mail.ru
Russian Federation, 34/5, Vavilova street, Moscow, 119334

References

  1. Ohler U., Liao G., Niemann H., Rubin G.M. // Genome Biol. 2002. V. 3. № 12. P. RESEARCH0087.
  2. Vo ngoc L., Wang Y.-L., Kassavetis G.A., Kadonaga J.T. // Genes Dev. 2017. V. 31. № 13. P. 1289-1301.
  3. Isogai Y., Keles S., Prestel M., Hochheimer A., Tjian R. // Genes Dev. 2007. V. 21. № 22. P. 2936-2949.
  4. Kedmi A., Zehavi Y., Glick Y., Orenstein Y., Ideses D., Wachtel C., Doniger T., Waldman Ben-Asher H., Muster N., Thompson J., et al. // Genes Dev. 2014. V. 28. № 19. P. 2163-2174.
  5. Wang Y.-L., Duttke S.H.C., Chen K., Johnston J., Kassavetis G.A., Zeitlinger J., Kadonaga J.T. // Genes Dev. 2014. V. 28. № 14. P. 1550-1555.
  6. Andersen P.R., Tirian L., Vunjak M., Brennecke J. // Nature. 2017. V. 549. № 7670. P. 54-59.
  7. Kopytova D. V., Krasnov A.N., Kopantceva M.R., Nabirochkina E.N., Nikolenko J. V., Maksimenko O., Kurshakova M.M., Lebedeva L.A., Yerokhin M.M., Simonova O.B., Korochkin L.I., Tora L., Georgiev P.G., Georgieva S.G. // Mol. Cell. Biol. 2006. V. 26. № 20. P. 7492-7505.
  8. Vorontsova Y.E., Cherezov R.O., Simonova O.B. // Genetika. 2013. V. 49. № 6. P. 669-80.
  9. Gratz S.J., Ukken F.P., Rubinstein C.D., Thiede G., Donohue L.K., Cummings A.M., O’Connor-Giles K.M. // Genetics. 2014. V. 196. № 4. P. 961-71.
  10. Zolotarev N., Maksimenko O., Kyrchanova O., Sokolinskaya E., Osadchiy I., Girardot C., Bonchuk A., Ciglar L., Furlong E.E.M., Georgiev P. // Nucleic Acids Res. 2017. V. 45. № 21. P. 12285-12300.
  11. Port F., Chen H.-M., Lee T., Bullock S.L. // Proc. Nat. Acad. Sci. U. S. A. 2014. V. 111. № 29. P. E2967-76.
  12. Bischof J., Maeda R.K., Hediger M., Karch F., Basler K. // Proc. Nat. Acad. Sci. 2007. V. 104. № 9. P. 3312-3317.
  13. Peter A., Schöttler P., Werner M., Beinert N., Dowe G., Burkert P., Mourkioti F., Dentzer L., He Y., Deak P., et al. // EMBO Rept. 2002. V. 3. № 1. P. 34-8.
  14. Morgunova V., Akulenko N., Radion E., Olovnikov I., Abramov Y., Olenina L. V., Shpiz S., Kopytova D. V., Georgieva S.G., Kalmykova A. // Nucleic Acids Res. 2015. V. 43. № 18. P. 8762-8773.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies