Geochemistry of garnet megacrysts from the Mir kimberlite pipe (Yakutia) and the nature of prothokimberlite melt

Cover Page

Cite item

Full Text

Abstract

The paper presents the results of major and trace elements composition study of garnet megacrysts from Mir kimberlite pipe. On the major elements composition those garnets classified as low Cr and high Ti pyropes. Concentrations of TiO2 show a negative correlation with MgO и Cr2O3 contents in megacrysts composition. Fractional crystallization modeling indicates that the most appropriate melt to reproduce the garnet trace elements signatures is the melt of picritic composition. Composition of garnets crystallized from kimberlite melt do not correspond to observed natural garnets composition. Kimberlites contain less of Ti, Zr, Y and heavy REE (rare earth elements) but more of very incompatible elements such as light REE, Th, U, Nb, Ba then the model melt composition that necessary for garnet crystallization.

About the authors

A. M. Agashev

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: agashev@igm.nsc.ru
Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

References

  1. Moore A., Belousova E. // Contributions to Mineralogy and Petrology. 2005. V. 149. P. 462-481.
  2. Jones R. A. Mantle Xenoliths. Chichester: Wiley. 1987. P. 711-724.
  3. Davies G. R., Spriggs A. J., Nixon P. J. // J. Petrology. 2001.V. 42. P. 159-172.
  4. Agashev A.M., Ionov D.A., Pokhilenko N.P., Golovin A.V., Cherepanova Yu., Sharygin I. S. // Lithos. 2013. V. 160. P. 201-215.
  5. Агашев А. М., Похиленко Н. П., Мальковец В. Г., Соболев Н. В. // ДАН. 2006. Т. 407. № 6. С. 806-809.
  6. Merry M., le Roex A. // Southern African J. Geology. 2007. V. 110. P. 597-610.
  7. Bell D. R. and Moore R. O. // South African J. Geology. 2004. V.107. P. 59-80.
  8. Sobolev N. V., Lavrent’ev Y.G., Pokhilenko N. P., Usova L. V. // Contrib. to Mineral. and Petrol. 1973. V. 40. P. 39-52.
  9. McDonough W.F., Sun S.-S. // Chemical Geology. 1995. V. 120. P. 223-253.
  10. Shchukina E. V., Agashev A. M., Pokhilenko N. P. // Geosci. Frontiers. 2017. http://dx.doi.org/10.1016/j.gsf.2016.08.005
  11. Tuff J., Gibson S. // Contrib. to Mineral. and Petrol. 2007. V. 153. P. 369-387.
  12. Willbold M., Stracke A. // Geochemistry, Geophysics, Geosystems. 2006. V. 7. № 4. http://dx.doi.org/10.1029/2005GC001005 (G3)
  13. Weis D., Frey F. A., Schlich R., Schaming M., Montigny R., Damasceno D., Mattielli N., Nicolaysen K. P., Scoates J. S. // Geochemistry, Geophysics, Geosystems. 2002. V. 3. № 6. P. 1-27.
  14. Keshav S., Corgne A., Gudfinnsson G. H., Bizmis M., McDonough W.F., Fei Y. // Geochim. et Cosmochim. Acta. 2005. V. 69. № 11. P. 2829-2845.
  15. Agashev A. M., Pokhilenko N. P., Takazawa E., McDonald J.A., Vavilov M. A., Watanabe I., Sobolev N. V. // Chem. Geology. 2008. V. 255 № 3/4. P. 317-328.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies