A new model of sulfur isotopes behavior in the modern submarine hydrothermal systems

Cover Page

Cite item

Full Text

Abstract

A model of sulfur isotope distribution at modern submarine hydrothermal systems is proposed. It is assumed that thermogenic sulfate reduction at the water-rock interaction zone takes place under closed system conditions respectively to fluid phase. As a result, the Rayleigh exhaustion with respect to the 32S isotope arises in the fluid. The model also takes into account the simultaneous extraction of reduced sulfur from surrounding rocks. The calculated fraction of extracted sulfur at the total content of reduced sulfur in the fluid varies from 0.15 to 0.06 for submarine systems associated with tholeiitic basalts and peridotites, respectively. The model application to published data can explain the well-known contradictions that have arisen during the study of the sulfur isotope composition of sulfides from world Ocean deep-sea edifices.

About the authors

E. O. Dubinina

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: elenadelta@gmail.com
Russian Federation, 35, Staromonetny, Moscow, 119017

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: elenadelta@gmail.com

Academician of the Russian Academy of Sciences

Russian Federation, 35, Staromonetny, Moscow, 119017

References

  1. Shanks W. C.I.I.I. Stable Isotope in Seafloor Hydrothermal Systems: Vent Fluids, Hydrothermal Deposits, Hydrothermal Alteration, and Microbial Processes. // Rev. Mineral. Geochem. 2001. № 43. P. 469-525.
  2. Бортников Н. С., Викентьев И. В. Современное сульфидное полиметаллическое минералообразование в Мировом океане // Геология руд. месторождений. 2005. Т. 47. № 1. С. 16-50.
  3. Peters M., Strauss H., Farquhar J., Ockert C., Eikmann B., Jost C. L. Sulfur Cycling at the Mid-Atlantic Ridge: A Multiple Sulfur Isotope Approach // Chemical Geology. 2009. doi: 10.1016/j.chemgeo. 2009.09.016
  4. Дубинина Е. О., Ставрова О. О., Бортников Н. С. Аномально высокие величины δ34S в постройках Срединно-Атлантического хребта: эффект закрытой системы в зоне генерации сульфидов // ДАН. 2018. Т. 483. № 6. С. 650-653.
  5. Ohmoto H., Lasaga A. C. Kinetics of Reactions Between Aqueous Sulfates and Sulfides in HydrothermalSystems // Geochim. Cosmochim. Acta 1982. № 46. P. 1727-1745.
  6. Woodruff L. G., Shanks W. C.I.I.I. Sulfur Isotope Study of Chimney Minerals and Hydrothermal Fluids from 21°N, East Pacific Rise: Hydrothermal Sulfur Sources and Disequilibrium Sulfate Reduction // J. Geophys. Res. 1988. V. 93. P. 4562-4572.
  7. Tivey M. K. Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits // Oceanography. 2007. V. 20. № 150. P. 50-65.
  8. Shanks W. C.I.I.I., Bischoff J. L., Rosenbauer R. J. Seawater Sulfate Reduction and Sulfur Isotope Fractionation in Basaltic Systems: Interaction of Seawater with Fayalite and Magnetite at 200-350 °C // Geochim. Cosmochim. Acta. 1981. V. 45. P. 1977-1995.
  9. Kadko D., Koski R., Tatsumoto M., Bouse R. An Estimate of Hydrothermal Fluid Residence Times and Vent Chimney Growth Rates Based on 210Pb/Pb Ratios and Mineralogic Studies of Sulfides Dredged from the Juan de Fuca Ridge // Earth and Planetary Science Letters. 1985. V. 76. № 86. P. 35-44.
  10. Bischoff J. L., Seyfried W. E. Hydrothermal Chemistry of Seawater from 25° to 350° // American Journal of Science. 1978. V. 278. № June. P. 838-860.
  11. Seal R. R.I.I. Sulfur Isotope Geochemistry of Sulfide Minerals // Rev. Mineral. Geochem. 2006. V. 61. P. 633-677.
  12. Le Maitre R. W. The Chemical Variability of Some Common Igneous Rocks // J. Petrol. 1976. V. 17. P. 589-637.
  13. Bortnikov N.S. Contrasts of Fluid Chemistry, Isotope Compositions and Temperature in Modern Seafloor Hydrothermal Systems. OCEANS Meeting. 2007. IEEE, 2007. С. 1-8.
  14. Bluth G. J., Ohmoto H. Sulfide-Sulfate Chimneys on the East Pacific Rise, 11° and 13°N Latitude Part II: Sulfur Isotopes // Can. Mineral. 1988. V. 26. P. 505-515.
  15. Rouxel O., Shanks W. C.I.I.I., Bach W., Edwards K. J. Integrated Fe- and S-Isotope Study of Seafloor Hydrothermal Vents at East Pacific Rise 9-10°N // Chem. Geol. 2008. V. 252. P. 214-227.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies