Heat generation due to friction in the shear crust zones as a factor of metamorphism and anatexis: the results of numerical simulation

Cover Page

Abstract


The heat release effect was estimated due to friction in faults under shear and thrust conditions by mathematical modeling, 3D and 2D thermomechanical numerical models were developed. The equations of solid mechanics in a coupled formulation were solved: the equations of mechanical equilibrium and the equation of heat transfer. The model of an elastic-plastic material with the Drucker-Prager and Huber-Mises yield function is used. For the 3D shear model, the heating was 100-110 °C for the value of the friction coefficient 0.3, 180-190 °C for 0.5, about 300 °C for 0.65. In models of horizontal thrust, the heating in the contact zone was 120-130 °C with a depth of shear plane of 20 km and 150-160 °C with a depth of shear plane of 30 km for a friction coefficient of 0.3. The results obtained can be considered as a lower estimate of the heating in the Yenisei collision-shear zone.


About the authors

A. V. Babichev

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: babichev@igm.nsc.ru

Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

V. V. Reverdatto

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: babichev@igm.nsc.ru

Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

Academician of the Russian Academy of Sciences

 

O. P. Polyansky

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: babichev@igm.nsc.ru

Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

I. I. Likhanov

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: babichev@igm.nsc.ru

Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

A. N. Semenov

Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Email: babichev@igm.nsc.ru

Russian Federation, 3, Koptyug prospect, Novosibirsk, 630090

References

  1. Mori H., Wallis S., Fujimoto K., Shigematsu N. // Island Arc. 2015. V. 24. P. 425-446.
  2. Strong D.F., Hanmer S.K. // Canad. Mineral. 1981. V. 19. P. 163-176.
  3. Nabelek, P. I., Whittington A. G., Hofmeister A. M. // J. Geophys. Res. 2010. V. 115. P. B12417. doi: 10.1029/2010JB007727.
  4. Лиханов И.И., Ножкин А.Д., Савко К.А. // Геотектоника. 2018. Т. 52. № 1. С. 28-51.
  5. Likhanov I.I., Régnier J.-L., Santosh M. // Lithos. 2018. V. 304-307. P. 468-488.
  6. Полянский О.П., Бабичев А.В. Коробейников С.Н., Бабичев А.В., Ревердатто В.В. // Петрология. 2010. Т. 18. №4. С. 450-466.
  7. Полянский О.П., Коробейников С.Н., Бабичев А.В., Ревердатто В.В., Свердлова В.Г. // Физика Земли. 2014. № 6. С. 124-137.
  8. Коробейников С.Н. Нелинейное деформирование твердых тел. Новосибирск: Изд-во СО РАН. 2000. 262 с.
  9. Бабичев А.В., Новиков И.С., Полянский О.П., Коробейников С.Н. // Геология и геофизика. 2009. № 50. №2. С. 137-151.
  10. Bird P., Kong X. // Geol. Soc. Am. Bull. 1994. V. 106(2). P. 159-174.
  11. Barr T.D., Dahlen F.A. // J. Geophys. Res. 1989. V. 94. № 4. P. 3923-3947.
  12. Верниковская А.Е., Верниковский В.А., Матушкин Н.Ю., Полянский О.П., Травин А.В. // Геология и геофизика. 2009. Т. 50. №5. С. 576-594.
  13. Ревердатто В.В., Бабичев А.В., Коробейников С.Н., Полянский О.П. // ДАН. 2010. Т. 430. № 6. С. 802-805.
  14. Верниковский В.А., Верниковская А.Е., Полянский О.П., Лаевский Ю.М., Матушкин Н.Ю., Воронин К.В. // Геология и геофизика. 2011. Т. 52. №1. С. 32-50.
  15. Не J., Lu Sh., Wang X. // J. of Asian Earth Sciences. 2009. V. 34. P. 363-375.

Statistics

Views

Abstract - 214

PDF (Russian) - 184

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies