Numerical modeling of the effects of major components in the melt on the chrome-spinel stability and a possible solution of the origin chromitites problem

Cover Page

Abstract


Using a new model of the spinel-melt equilibrium SPINMELT-2.0, the effect of variations of fo-, fa-, en-, fs-, di-, an- and ab-components in high-Mg basaltic melts on the topology of the spinel liquidus was quantified. It has been established that enrichment of the melt in pyroxene components leads to an increase, and with plagioclase components, to a decrease in the solubility of chromite. This effect can be important during gravitational compaction of cumulates, accompanied by the extraction of intercumulus melt and its infiltration upward. In this case, one can expect a sequential re-equilibration of the infiltrating melt with cumulative piles of different composition. This suggests the possibility of transfer and new concentration of chrome-spinel at the postcumulus stage of solidification of layered intrusions. The nature of the concentration consists in the extraction of chrome-spinel into the melt enriched in pyroxene components, followed by its discharge during the reaction of this melt with a feldspar-rich matrix of proto-anorthosite layers. The realism of the proposed mechanism is evidenced by the well-known spatial association of chromite layers with anorthosites (intrusion of Ram island, Bushveld complex).


About the authors

G. S. Nikolaev

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: gsnikolaev@rambler.ru

Russian Federation, 19, Kosygin street, Moscow, 119991

A. A. Ariskin

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: gsnikolaev@rambler.ru

Russian Federation, 19, Kosygin street, Moscow, 119991; 1, Leninskie gory, Moscow, 119991

G. S. Barmina

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences

Email: gsnikolaev@rambler.ru

Russian Federation, 19, Kosygin street, Moscow, 119991

References

  1. Naldrett A. J., Wilson A., Kinnaird J., Yudovskaya M., Chunnett G. The Origin of Chromitites and Related PGE Mineralization in the Bushveld Complex: New Mineralogical and Petrological Constraints // Miner. Deposita. 2012. V. 47. P. 209-232. doi: 10.1007/s00126-011-0366-3.
  2. Irvine T. N. Origin of Chromitite Layers in the Muskox Intrusion and Other Stratiform Intrusions: A New Interpretation // Geology. 1977. V. 5. P. 273-277.
  3. Latypov R., Chistyakova S., Mukherjee R. A Novel Hypothesis for Origin of Massive Chromitites in the Bushveld Igneous Complex // J. Petrol. 2017. V. 58. Iss. 10. P. 1899-1940. doi: 10.1093/petrology/egx077.
  4. Eales H. V., Costin G. Crustally Contaminated Komatiite: Primary Source of the Chromitites and Marginal, Lower, and Critical Zone Magmas in a Staging Chamber Beneath the Bushveld Complex // Econ. Geol. 2012. V. 107. P. 645-665.
  5. Boudreau A. E. Modeling the Merensky Reef, Bushveld Complex, Republic of South Africa // Contribs Mi-ne-ral. and Petrol. 2008. V. 156. P. 431-437.
  6. O’Driscoll B., Emeleus C. H., Donaldson C. H., Daly J. S. Cr-Spinel Seam Petrogenesis in the Rum Layered Suite, NW Scotland: Cumulate Assimilation and in situ Crystallization in a Deforming Crystal Mush // J. Petrol. 2010. V. 51. Iss. 6. P. 1171-1201. doi: 10.1093/petrology/egq013.
  7. Leuthold J., Blundy J. D., Brooker R. A. Experimental Petrology Constraints on the Recycling of Mafic Cumulate: A Focus on Cr-Spinel from the Rum Eastern Layered Intrusion, Scotland // Contribs Mineral and Petrol. 2015. V. 170. № 12. doi: 10.1007/s00410-015-1165-0.
  8. Mathez E. A., Kinzler R. J. Metasomatic Chromitite Seams in the Bushveld and Rum Layered Intrusions // Elements. 2017. V. 13. № 6. P. 397-402. doi: 10.2138/gselements.13.6.397.
  9. Ghiorso M. S., Sack R. O. Chemical Mass Transfer in Magmatic Process IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures // Contribs Mineral. and Petrol. 1995. V. 119. P. 197-212.
  10. Wilson A. H. A Chill Sequence to the Bushveld Complex: Insight into the First Stage of Emplacement and Implications for the Parental Magmas // J. Petrol. 2012. V. 53. Iss. 6. P. 1123-1168.
  11. Николаев Г. С., Арискин А. А., Бармина Г. С. SPINMELT 2.0: Численное моделирование равновесия шпинелид - расплав в базальтовых системах при давлениях до 15 кбар. I. Формулировка, калибровка и тестирование модели // Геохимия. 2018. Т. 1. С. 28-49.
  12. Коржинский Д. С. Кислотно-основное взаимодействие компонентов в силикатных расплавах и направление котектических линий // ДАН. Т. 128. № 2. С. 383-386.
  13. Николаев Г. С., Арискин А. А., Бармина Г. С. SPINMELT 2.0: Численное моделирование равновесия шпинелид - расплав в базальтовых системах при давлениях до 15 кбар. II. Описание программы, топология модельной системы хромшпинелид-расплав и её петрологические приложения // Геохимия. 2018. Т. 2. С. 135-146.
  14. Irvine T.N. Infiltration Metasomatism Accumulate Growth and Double-Diffusive Fractional Crystallization in the Muskox Intrusion and Other Layered Intrusions. In: Hargraves R.B. Physics of Magmatic Processes. Princeton: Princeton Univ. Press, 1980. P. 325-383.
  15. Pebane M., Latypov R. The Significance of Magmatic Erosion for Bifurcation of UG1 Chromitite Layers in the Bushveld Complex // Ore Geol. Rev. 2017. V. 90. P. 65-93. doi: 10.1016/j.oregeorev.2017.02.026.

Statistics

Views

Abstract - 154

PDF (Russian) - 112

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies