Caustics of vortex optical beams

Cover Page

Abstract


The work is devoted to the study of caustics of vortex optical beams. An asymptotic method for calculating the caustic surfaces of vortex beams was developed. The formulation of the inverse problem of the formation of axial caustics of the required type is considered. It is shown that the presence of the vortex component leads to the formation of an axisymmetric caustic surface, the characteristic diameter of which increases with increasing topological charge.


About the authors

V. A. Soifer

Image Processing Systems Institute of the Russian Academy of Sciences, branch of the Shubnikov Crystallography Institute of the Russian Academy of Sciences; Samara National Research University

Email: khonina@smr.ru

Russian Federation, 151, Molodogvardejskaya street, Samara, 443001; 34, Moscow highway, Samara, 443086

Academician of the Russian Academy of Sciences

S. I. Kharitonov

Image Processing Systems Institute of the Russian Academy of Sciences, branch of the Shubnikov Crystallography Institute of the Russian Academy of Sciences; Samara National Research University

Email: khonina@smr.ru

Russian Federation, 151, Molodogvardejskaya street, Samara, 443001; 34, Moscow highway, Samara, 443086

S. N. Khonina

Image Processing Systems Institute of the Russian Academy of Sciences, branch of the Shubnikov Crystallography Institute of the Russian Academy of Sciences; Samara National Research University

Author for correspondence.
Email: khonina@smr.ru

Russian Federation, 151, Molodogvardejskaya street, Samara, 443001; 34, Moscow highway, Samara, 443086

S. G. Volotovsky

Image Processing Systems Institute of the Russian Academy of Sciences, branch of the Shubnikov Crystallography Institute of the Russian Academy of Sciences; Samara National Research University

Email: khonina@smr.ru

Russian Federation, 151, Molodogvardejskaya street, Samara, 443001; 34, Moscow highway, Samara, 443086

References

  1. Nye J. F., Berry M. V. Dislocations in Wave Trains // Proc. Rog. Soc. London. Ser. A. 1974. V. 336. P. 165-190. doi: 10.1098/rspa.1974.0012.
  2. Soskin M. S., Vasnetsov M. V. Singular Optics // Progress in Optics. 2001. V. 42. P. 219-276. doi: 10.1016/S0079-6638(01)80018-4.
  3. Dennis M. R., O’Holleran K., Padgett M. J. Singular Optics: Optical Vortices and Polarization Singularities // Progress in Optics. 2009. V. 53. P. 293-363. doi: 10.1016/S0079-6638(08)00205-9.
  4. Берёзный А. Е., Прохоров А. М., Сисакян И. Н., Сойфер В. А. Бессель-оптика // ДАН. 1984. Т. 234. № 4. С. 802-805.
  5. Khonina S. N., Kotlyar V. V., Shinkaryev M. V., Soifer V. A., Uspleniev G. V. The Phase Rotor Filter // J. Modern Optics. 1992. V. 39. № 5. P. 1147-1154. doi: 10.1080/09500349214551151.
  6. Кравцов А. Ю., Орлов Ю. И. Каустики, катастрофы и волновые поля // УМН. 1983. Т. 141. № 4. С. 591-627. doi: 10.3367/UFNr.0141.198312b.0591.
  7. Born М., Wolf Е. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. L.: Pergamon Press, 1975. 808 p. ISBN: 978-0-08-018018-2.
  8. Арнольд В. И. Особенности гладких отображений // УМН. 1968. Т. 23. № 1 (139). С. 3-44.
  9. Постон Т., Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980. 607 с.
  10. Гилмор Р. Прикладная теория катастроф. М.: Мир, 1984.
  11. Berry M. V., Upstill C. Catastrophe Optics: Morphologies of Caustics and Their Diffraction Patterns // Progress in Optics. 1980. V. 18. P. 257-346. doi: 10.1016/S0079-6638(08)70215-4.
  12. Kharitonov S. I., Volotovsky S. G., Khonina S. N. Hybrid Asymptotic Method for Analyzing Caustics of Optical Elements in the Axially Symmetric Case // Computer Optics. 2017. V. 41. № 2. P. 175-182. doi: 10.18287/2412-6179-2017-41-2-175-1.
  13. Методы компьютерной оптики / Под ред. В. А. Сойфера. М.: Физматлит, 2003. 688 с. ISBN: 5-9221-0434-9.

Statistics

Views

Abstract - 129

PDF (Russian) - 106

PlumX


Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies