Ethylene-insensitive Arabidopsis mutants etr1-1 AND ein2-1 have decreased freezing tolerance

Cover Page

Cite item

Full Text

Abstract

The freezing tolerance of Arabidopsis thaliana (L.) Heynh. was studied in relation to functioning of the ethylene signaling pathway. Constitutive freezing tolerance was compared in wild-type plants (ecotype Col-0) and ethylene-insensitive mutants etr1-1 and ein2-1. For the first time it was established that ethylene-insensitive mutants had by 25-30% lower net photosynthesis rate, the decreased content of soluble sugars and, as a result, lower freezing tolerance. Our work provides evidence that perception and transduction of ethylene signal are necessary for constitutive tolerance of Arabidopsis to low temperature.

About the authors

V. N. Popov

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: vnpopov@mail.ru
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

A. N. Deryabin

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: vnpopov@mail.ru
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

N. V. Astakhova

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: vnpopov@mail.ru
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

O. V. Antipina

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: vnpopov@mail.ru
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

T. A. Suvorova

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: vnpopov@mail.ru
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

G. P. Alieva

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: vnpopov@mail.ru
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

I. E. Moshkov

K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

Email: vnpopov@mail.ru
Russian Federation, 35, Botanicheskaya street, Moscow, 127276

References

  1. Bleecker A. B., Kende H. // Ann. Rev. Cell and Develop. Biol. 2000. V. 16. P. 1-18.
  2. Ciardi J. A., Deikman J., Orzolek M. D. // Physiol. Plant. 1997. V. 101. P. 333-340.
  3. Catal R., Lopez-Cobollo R., Castellano M. M., et al. // Plant Cell. 2014. V. 26. P. 3326-3342.
  4. Catal R., Salinas J. // Plant Signaling & Behavior. 2015. V. 10. № 3. P. e989768-1-e989768-2.
  5. Shi Y., Tian S., Hou L., et al. // Plant Cell. 2012. V. 24. P. 2578-2595.
  6. Woeste K., Kieber J. J. // Phil. Trans. Roy. Soc. London. 1998. V. 353. P. 1431-1438.
  7. Alonso J. M., Hirayama T., Roman G., et al. // Science. 1999. V. 284. P. 2148-2152.
  8. Campos P. S., Quartin V., Ramalho J. C., et al. // J. Plant Physiol. 2003. V. 160. P. 283-292.
  9. Жиров В. К., Мерзляк М. Н., Кузнецов Л. В. // Физиология растений. 1982. Т. 29. С. 1045-1052.
  10. Туркина М. В., Соколова С. В. Методы определения моносахаридов и олигосахаридов. В кн.: Биохимические методы в физиологии растений / Под ред. О. А. Павлиновой. М.: Наука, 1971. С. 7-34.
  11. Климов С. В. // Изв. РАН. Сер. биол. 2003. Т. 30. С. 57-62.
  12. Tarkowski L. P., Van den Ende W. // Front. Plant Sci. 2015. V. 6. Article 203.
  13. Zuther E., Schulz E., Childs L. H., et al. // Plant Cell Environ. 2012. V. 35. P. 1860-1878.
  14. Leon P., Sheen J. // Trends in Plant Science. 2003. V. 8. P. 110-116.
  15. Zhou L., Jang J. C., Jones T. L., et al. // Proc. Nat. Acad. Sci. USA. 1998. V. 95. P. 10 294-10 299.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies